A362829 Positions in lexicographic order of odd partitions of sufficiently large numbers.
1, 3, 7, 10, 15, 20, 27, 30, 39, 41, 51, 56, 69, 72, 75, 93, 95, 101, 123, 128, 132, 134, 160, 163, 166, 172, 176, 212, 214, 220, 227, 229, 273, 278, 282, 284, 291, 297, 353, 356, 359, 365, 369, 379, 382, 384, 453, 455, 461, 468, 470, 481, 483, 490, 579, 584
Offset: 1
Keywords
Examples
a(1)=1 because 1+1+...+1 (k times) is the first partition in lexicographic order of any positive integer k, and it is odd. a(2)=3 because 1+1+...+1(k-3 times)+3=k is the third partition of k lexicographically and it is odd.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..10000
Extensions
More terms from Pontus von Brömssen, Sep 14 2023
Comments