A362831 Number of partitions of n into two distinct parts (s,t) such that pi(s) = pi(t).
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1
Offset: 1
Examples
a(51) = 3. The 3 partitions of 51 are (23,28), (24,27), and (25,26).
Programs
-
Mathematica
Table[Sum[KroneckerDelta[PrimePi[k], PrimePi[n - k]], {k, Floor[(n - 1)/2]}], {n, 100}]