A362837 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling1(n-j,j)/(n-j)!.
1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 3, 0, 1, 0, 6, 12, 20, 0, 1, 0, 8, 27, 112, 90, 0, 1, 0, 10, 48, 324, 960, 594, 0, 1, 0, 12, 75, 704, 4050, 10848, 4200, 0, 1, 0, 14, 108, 1300, 11520, 64962, 141120, 34544, 0, 1, 0, 16, 147, 2160, 26250, 239616, 1224720, 2122496, 316008, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 0, 0, 0, 0, 0, ... 0, 2, 4, 6, 8, 10, ... 0, 3, 12, 27, 48, 75, ... 0, 20, 112, 324, 704, 1300, ... 0, 90, 960, 4050, 11520, 26250, ...
Crossrefs
Programs
-
PARI
T(n, k) = (-1)^n*n!*sum(j=0, n\2, k^(n-j)*stirling(n-j, j, 1)/(n-j)!);
Formula
E.g.f. of column k: 1/(1 - k * x)^x.