A362847 Triangle read by rows, T(n, k) = 4^k * Gamma(n + k + 1/2) / Gamma(n - k + 1/2).
1, 1, 3, 1, 15, 105, 1, 35, 945, 10395, 1, 63, 3465, 135135, 2027025, 1, 99, 9009, 675675, 34459425, 654729075, 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225, 1, 195, 36465, 6235515, 916620705, 105411381075, 7905853580625, 213458046676875
Offset: 0
Examples
[0] 1; [1] 1, 3; [2] 1, 15, 105; [3] 1, 35, 945, 10395; [4] 1, 63, 3465, 135135, 2027025; [5] 1, 99, 9009, 675675, 34459425, 654729075; [6] 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225;
Programs
-
Maple
T := (n, k) -> 4^k * GAMMA(n + k + 1/2) / GAMMA(n - k + 1/2): seq(seq(T(n, k), k = 0..n), n = 0..7);
-
Mathematica
T[n_,k_]:=(2*(n+k)-1)!!/(2*(n-k)-1)!!;Flatten[Table[T[n,k],{n,0,7},{k,0,n}]] (* Detlef Meya, Oct 09 2023 *)
Formula
T(n ,k ) = (2*(n + k) - 1)!!/(2*(n - k) - 1)!!; 0 <= n <= k. - Detlef Meya, Oct 09 2023