cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362847 Triangle read by rows, T(n, k) = 4^k * Gamma(n + k + 1/2) / Gamma(n - k + 1/2).

Original entry on oeis.org

1, 1, 3, 1, 15, 105, 1, 35, 945, 10395, 1, 63, 3465, 135135, 2027025, 1, 99, 9009, 675675, 34459425, 654729075, 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225, 1, 195, 36465, 6235515, 916620705, 105411381075, 7905853580625, 213458046676875
Offset: 0

Views

Author

Peter Luschny, May 05 2023

Keywords

Examples

			[0] 1;
[1] 1,   3;
[2] 1,  15,   105;
[3] 1,  35,   945,   10395;
[4] 1,  63,  3465,  135135,   2027025;
[5] 1,  99,  9009,  675675,  34459425,   654729075;
[6] 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225;
		

Crossrefs

Cf. A362848 (row sums), A000466 (column 1), A101485 (main diagonal).

Programs

  • Maple
    T := (n, k) -> 4^k * GAMMA(n + k + 1/2) / GAMMA(n - k + 1/2):
    seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    T[n_,k_]:=(2*(n+k)-1)!!/(2*(n-k)-1)!!;Flatten[Table[T[n,k],{n,0,7},{k,0,n}]] (* Detlef Meya, Oct 09 2023 *)

Formula

T(n ,k ) = (2*(n + k) - 1)!!/(2*(n - k) - 1)!!; 0 <= n <= k. - Detlef Meya, Oct 09 2023