A362885 Array read by ascending antidiagonals: A(n, k) = (1 + 2*n)*k^n.
1, 0, 1, 0, 3, 1, 0, 5, 6, 1, 0, 7, 20, 9, 1, 0, 9, 56, 45, 12, 1, 0, 11, 144, 189, 80, 15, 1, 0, 13, 352, 729, 448, 125, 18, 1, 0, 15, 832, 2673, 2304, 875, 180, 21, 1, 0, 17, 1920, 9477, 11264, 5625, 1512, 245, 24, 1, 0, 19, 4352, 32805, 53248, 34375, 11664, 2401, 320, 27, 1
Offset: 0
Examples
The array begins: 1, 1, 1, 1, 1, 1, ... 0, 3, 6, 9, 12, 15, ... 0, 5, 20, 45, 80, 125, ... 0, 7, 56, 189, 448, 875, ... 0, 9, 144, 729, 2304, 5625, ... 0, 11, 352, 2673, 11264, 34375, ... ...
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=(1+2n)k^n; Join[{1}, Table[A[n-k,k],{n,10},{k,0,n}]]//Flatten (* or *) A[n_,k_]:=SeriesCoefficient[(1+k*x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *) A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+2k*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten