cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362893 Number of partitions of [n] whose blocks can be ordered such that the i-th block has at least i elements and no block j > i has an element smaller than the i-th smallest element of block i.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 28, 69, 193, 614, 2103, 7359, 25660, 88914, 309502, 1102146, 4092840, 16046224, 66410789, 286905421, 1273646720, 5729762139, 25881820352, 116872997038, 527375160184, 2384407416357, 10856086444051, 50097994816979, 235937202788389
Offset: 0

Views

Author

Alois P. Heinz, May 08 2023

Keywords

Examples

			a(0) = 1: (), the empty partition.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 2: 123, 1|23.
a(4) = 5: 1234, 12|34, 13|24, 14|23, 1|234.
a(5) = 12: 12345, 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345.
a(6) = 28: 123456, 1234|56, 1235|46, 1236|45, 123|456, 1245|36, 1246|35, 124|356, 1256|34, 125|346, 126|345, 12|3456, 1345|26, 1346|25, 134|256, 1356|24, 135|246, 136|245, 13|2456, 1456|23, 145|236, 146|235, 14|2356, 156|234, 15|2346, 16|2345, 1|23456, 1|23|456.
a(7) = 69: 1234567, 12345|67, 12346|57, 12347|56, 1234|567, 12356|47, 12357|46, 1235|467, 12367|45, 1236|457, 1237|456, 123|4567, 12456|37, 12457|36, 1245|367, 12467|35, 1246|357, 1247|356, 124|3567, 12567|34, 1256|347, 1257|346, 125|3467, 1267|345, 126|3457, 127|3456, 12|34567, 12|34|567, 13456|27, 13457|26, 1345|267, 13467|25, 1346|257, 1347|256, 134|2567, 13567|24, 1356|247, 1357|246, 135|2467, 1367|245, 136|2457, 137|2456, 13|24567, 13|24|567, 14567|23, 1456|237, 1457|236, 145|2367, 1467|235, 146|2357, 147|2356, 14|23567, 14|23|567, 1567|234, 156|2347, 157|2346, 15|23467, 167|2345, 16|23457, 17|23456, 1|234567, 1|234|567, 15|23|467, 1|235|467, 16|23|457, 1|236|457, 17|23|456, 1|237|456, 1|23|4567.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0 or n=t, 1,
          add(b(n-j, t+1)*binomial(n-t, j-t), j=t..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..28);