A362893 Number of partitions of [n] whose blocks can be ordered such that the i-th block has at least i elements and no block j > i has an element smaller than the i-th smallest element of block i.
1, 1, 1, 2, 5, 12, 28, 69, 193, 614, 2103, 7359, 25660, 88914, 309502, 1102146, 4092840, 16046224, 66410789, 286905421, 1273646720, 5729762139, 25881820352, 116872997038, 527375160184, 2384407416357, 10856086444051, 50097994816979, 235937202788389
Offset: 0
Keywords
Examples
a(0) = 1: (), the empty partition. a(1) = 1: 1. a(2) = 1: 12. a(3) = 2: 123, 1|23. a(4) = 5: 1234, 12|34, 13|24, 14|23, 1|234. a(5) = 12: 12345, 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345. a(6) = 28: 123456, 1234|56, 1235|46, 1236|45, 123|456, 1245|36, 1246|35, 124|356, 1256|34, 125|346, 126|345, 12|3456, 1345|26, 1346|25, 134|256, 1356|24, 135|246, 136|245, 13|2456, 1456|23, 145|236, 146|235, 14|2356, 156|234, 15|2346, 16|2345, 1|23456, 1|23|456. a(7) = 69: 1234567, 12345|67, 12346|57, 12347|56, 1234|567, 12356|47, 12357|46, 1235|467, 12367|45, 1236|457, 1237|456, 123|4567, 12456|37, 12457|36, 1245|367, 12467|35, 1246|357, 1247|356, 124|3567, 12567|34, 1256|347, 1257|346, 125|3467, 1267|345, 126|3457, 127|3456, 12|34567, 12|34|567, 13456|27, 13457|26, 1345|267, 13467|25, 1346|257, 1347|256, 134|2567, 13567|24, 1356|247, 1357|246, 135|2467, 1367|245, 136|2457, 137|2456, 13|24567, 13|24|567, 14567|23, 1456|237, 1457|236, 145|2367, 1467|235, 146|2357, 147|2356, 14|23567, 14|23|567, 1567|234, 156|2347, 157|2346, 15|23467, 167|2345, 16|23457, 17|23456, 1|234567, 1|234|567, 15|23|467, 1|235|467, 16|23|457, 1|236|457, 17|23|456, 1|237|456, 1|23|4567.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..890
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0 or n=t, 1, add(b(n-j, t+1)*binomial(n-t, j-t), j=t..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..28);