cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362897 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of endofunctions on an n-set with k endofunctions.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 7, 1, 1, 1, 13, 74, 19, 1, 1, 1, 22, 638, 1474, 47, 1, 1, 1, 34, 4663, 118949, 41876, 130, 1, 1, 1, 50, 28529, 7643021, 42483668, 1540696, 343, 1, 1, 1, 70, 151600, 396979499, 33179970333, 23524514635, 68343112, 951, 1
Offset: 0

Views

Author

Andrew Howroyd, May 10 2023

Keywords

Comments

Isomorphism is up to permutations of the elements of the n-set.

Examples

			Array begins:
======================================================================
n/k| 0   1       2           3               4                   5 ...
---+------------------------------------------------------------------
0  | 1   1       1           1               1                   1 ...
1  | 1   1       1           1               1                   1 ...
2  | 1   3       7          13              22                  34 ...
3  | 1   7      74         638            4663               28529 ...
4  | 1  19    1474      118949         7643021           396979499 ...
5  | 1  47   41876    42483668     33179970333      20762461502595 ...
6  | 1 130 1540696 23524514635 274252613077267 2559276179593762172 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A001372, A054745, A362898.
Row n=2 is A002623.
Main diagonal is A277839.
Cf. A362644.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(v,m) = {prod(i=1, #v, my(g=gcd(v[i],m), e=v[i]/g); sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t,m))==0, t))^g)}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q,m)*x^m/m, O(x*x^k))), k)); s/n!)}

Formula

T(0,k) = T(1,k) = 1.