cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A362899 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of fixed-point-free endofunctions on an n-set with k endofunctions.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 6, 1, 1, 0, 1, 22, 162, 13, 1, 1, 0, 1, 63, 3935, 4527, 40, 1, 1, 0, 1, 136, 81015, 1497568, 172335, 100, 1, 1, 0, 1, 302, 1369101, 384069023, 883538845, 7861940, 291, 1, 1, 0, 1, 580, 19601383, 78954264778, 3450709120355, 725601878962, 416446379, 797, 1
Offset: 0

Views

Author

Andrew Howroyd, May 10 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set. Each endofunction can be considered to be a loopless digraph where each node has out-degree 1.

Examples

			Array begins:
==============================================================
n/k| 0  1      2         3             4                 5 ...
---+----------------------------------------------------------
0  | 1  1      1         1             1                 1 ...
1  | 1  0      0         0             0                 0 ...
2  | 1  1      1         1             1                 1 ...
3  | 1  2      9        22            63               136 ...
4  | 1  6    162      3935         81015           1369101 ...
5  | 1 13   4527   1497568     384069023       78954264778 ...
6  | 1 40 172335 883538845 3450709120355 10786100835304758 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A001373, A362900, A362901.
Main diagonal is A362902.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(v,m) = {prod(i=1, #v, my(g=gcd(v[i],m), e=v[i]/g); (sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t,m))==0, t)) - 1)^g)}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q,m)*x^m/m, O(x*x^k))), k)); s/n!)}
Showing 1-1 of 1 results.