cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362910 Semiprimes p*q for which p <= q < p^3.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 85, 91, 95, 115, 119, 121, 133, 143, 145, 155, 161, 169, 185, 187, 203, 205, 209, 215, 217, 221, 235, 247, 253, 259, 265, 287, 289, 295, 299, 301, 305, 319, 323, 329, 335, 341, 355, 361, 365
Offset: 1

Views

Author

Alain Rocchelli, May 10 2023

Keywords

Crossrefs

Cf. A001248 (subsequence), A001358, A251728.

Programs

  • Maple
    with(numtheory):
    q:= n-> bigomega(n)=2 and (s-> max(s)Alois P. Heinz, May 10 2023
  • Mathematica
    Select[Range[335], (f = FactorInteger[#])[[;; , 2]] == {2} || (f[[;; , 2]] == {1, 1} && f[[2, 1]] < f[[1, 1]]^3) &] (* Amiram Eldar, May 10 2023 *)
  • PARI
    isok(n)=if(bigomega(n)<>2, 0, my(minfact=factor(n)[1,1], maxfact=n/minfact); maxfact
    				
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A362910(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(min(x//p,p**3)) for p in primerange(s+1)))
        return bisection(f,n,n) # Chai Wah Wu, Mar 05 2025

Formula

Limit_{n->oo} n*log(a(n))/a(n) = log(3).