A362917 The part of n to the left of the decimal point in the Dekking-van-Loon-canonical base phi representation of n.
0, 1, 10, 11, 101, 1000, 1010, 1011, 10001, 10010, 10011, 10101, 100000, 100010, 100011, 100101, 101000, 101010, 101011, 1000001, 1000010, 1000011, 1000101, 1001000, 1001010, 1001011, 1010001, 1010010, 1010011, 1010101, 10000000
Offset: 0
Examples
The canonical base phi representations of the numbers 0 through 12 are: 0 = 0. 1 = 1. 2 = 10.01 3 = 11.01 4 = 101.01 5 = 1000.1001 6 = 1010.0001 7 = 1011.0001 8 = 10001.0001 9 = 10010.0101 10 = 10011.0101 11 = 10101.0101 12 = 100000.101001
References
- Dekking, Michel, and Ad van Loon. "On the representation of the natural numbers by powers of the golden mean." arXiv preprint arXiv:2111.07544 (2021); Fib. Quart. 61:2 (May 2023), 105-118.
Links
- Michel Dekking and Ad van Loon, On the representation of the natural numbers by powers of the golden mean, arXiv:2111.07544 [math.NT], 15 Nov 2021.
- Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023. (see chapter 10, page 28)
Extensions
a(13)-a(32) from Hugo Pfoertner, May 26 2023
Comments