cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362917 The part of n to the left of the decimal point in the Dekking-van-Loon-canonical base phi representation of n.

Original entry on oeis.org

0, 1, 10, 11, 101, 1000, 1010, 1011, 10001, 10010, 10011, 10101, 100000, 100010, 100011, 100101, 101000, 101010, 101011, 1000001, 1000010, 1000011, 1000101, 1001000, 1001010, 1001011, 1010001, 1010010, 1010011, 1010101, 10000000
Offset: 0

Views

Author

N. J. A. Sloane, May 26 2023

Keywords

Comments

The part to the right of the decimal point, reversed, is given by A341722, that is, it is the same as in the Bergman-canonical representation. I asked Jeffrey Shallit to confirm this, and he provided the following verification using the Walnut Theorem-Prover:
[Walnut]$ eval sloane "?msd_fib An,x1,x2,y1,y2 ($saka(n,x1,y1) & $dvl(n,x2,y2)) => $equal(y1,y2)":
(saka(n,x1,y1))&dvl(n,x2,y2))):54 states - 66ms
((saka(n,x1,y1))&dvl(n,x2,y2)))=>equal(y1,y2))):2 states - 25ms
(A n , x1 , x2 , y1 , y2 ((saka(n,x1,y1))&dvl(n,x2,y2)))=>equal(y1,y2)))):1 states - 81ms
Total computation time: 264ms.
TRUE

Examples

			The canonical base phi representations of the numbers 0 through 12 are:
0 = 0.
1 = 1.
2 = 10.01
3 = 11.01
4 = 101.01
5 = 1000.1001
6 = 1010.0001
7 = 1011.0001
8 = 10001.0001
9 = 10010.0101
10 = 10011.0101
11 = 10101.0101
12 = 100000.101001
		

References

  • Dekking, Michel, and Ad van Loon. "On the representation of the natural numbers by powers of the golden mean." arXiv preprint arXiv:2111.07544 (2021); Fib. Quart. 61:2 (May 2023), 105-118.

Crossrefs

Differs from A105424 at positions given by A003231.

Extensions

a(13)-a(32) from Hugo Pfoertner, May 26 2023