A362924 Triangle read by rows: T(n,m), n >= 1, 1 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.
1, 2, 1, 5, 4, 1, 15, 13, 8, 1, 52, 47, 35, 16, 1, 203, 188, 153, 97, 32, 1, 877, 825, 706, 515, 275, 64, 1, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1, 678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1
Offset: 1
Examples
Triangle begins: [1], [2, 1], [5, 4, 1], [15, 13, 8, 1], [52, 47, 35, 16, 1], [203, 188, 153, 97, 32, 1], [877, 825, 706, 515, 275, 64, 1], [4140, 3937, 3479, 2744, 1785, 793, 128, 1], [21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1], [115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1], [678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1], ... For example, if n=4, m=3, then T(4,3) = 8, because out of the A000110(4) = 15 set partitions of {1,2,3,4}, those that have 2 or more blocks contained in {1,2,3} are {12,3,4}, {13,2,4}, {14,2,3}, {23,1,4}, {24,1,3}, {34,1,2}, {1,2,3,4}, while {1234}, {123,4}, {124,3} {134,2} {234,1}, {12,34} {13. 24}. {14, 23} do not.
References
- D. E. Knuth, The Art of Computer Programming, Volume 4B, exercise 7.2.2.1--185, answer on page 468.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened).
Crossrefs
Programs
-
Maple
with(combinat); T:=proc(n,m) local k; add(stirling2(n-m,k)*(k+1)^m, k=0..n-m); end;
-
Mathematica
A362924[n_,m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}]; Table[A362924[n,m],{n,15},{m,n}] (* Paolo Xausa, Dec 02 2023 *)
Comments