cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362931 a(n) = number of pairs (i,j) in [1..n] X [1..n] with integral harmonic mean 2*i*j/(i+j).

Original entry on oeis.org

1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20, 21, 22, 27, 28, 29, 34, 35, 40, 41, 42, 43, 48, 49, 50, 51, 56, 57, 66, 67, 68, 69, 70, 75, 80, 81, 82, 83, 88, 89, 98, 99, 100, 109, 110, 111, 116, 117, 118, 119, 120, 121, 126, 127, 132, 133, 134, 135, 148, 149, 150, 155, 156, 157, 166, 167, 168, 169, 174, 175, 184, 185, 186, 191, 192, 197, 202, 203, 208
Offset: 1

Views

Author

N. J. A. Sloane, Aug 28 2023

Keywords

Crossrefs

Cf. A000982 (arithmetic mean analog), A132188 (geometric mean analog).
Cf. also A362932-A362937.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)-1+
          2*add(`if`(irem(2*i*n, i+n)=0, 1, 0), i=1..n))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 28 2023
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, a[n-1] - 1 +
       2*Sum[If[Mod[2*i*n, i+n] == 0, 1, 0], {i, 1, n}]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 13 2024, after Alois P. Heinz *)
  • Python
    def A362931(n): return n+(sum(1 for x in range(1,n+1) for y in range(1,x) if not (x*y<<1)%(x+y))<<1) # Chai Wah Wu, Aug 28 2023

Formula

a(n) = n + Sum_{1<=iChai Wah Wu, Aug 28 2023