A362953 Numbers N such that N + the sum of the cubes of its digits is again a third power.
0, 34, 352, 540, 1167, 1942, 2176, 3312, 4093, 5454, 8019, 9380, 12025, 12130, 13068, 13158, 15344, 15991, 16279, 16675, 21149, 22699, 22789, 30988, 32257, 32365, 35238, 37883, 37955, 41866, 45549, 54523, 57906, 58530, 62579, 72588, 83692, 83782, 89604, 102952
Offset: 0
Examples
The sum of the cubes of the digits of N = 34 is 3^3 + 4^3 = 27 + 64 = 91; added to the number N itself yields 125 which is again a cube, 5^3. Therefore 34 is in this sequence.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
- Karl-Heinz Hofmann, Visualization of n = 0 to 11.
Crossrefs
Programs
-
PARI
select( {is(n,p=3)=ispower(vecsum([d^p|d<-digits(n)])+n,p)}, [0..10^5])
-
Python
aupto = 103000 A362953 = [] A000578 = set(cu**3 for cu in range(0, int(aupto**(1/3)+3))) for n in range(0,aupto+1): if n + sum(int(digit)**3 for digit in str(n)) in A000578: A362953.append(n) print(A362953) # Karl-Heinz Hofmann, May 24 2023