cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Will Gosnell

Will Gosnell's wiki page.

Will Gosnell has authored 30 sequences. Here are the ten most recent ones:

A385681 a(n) is the least k > 1 such that n^2 == k (mod sopfr(k)) and k^2 == n (mod sopfr(n)), or -1 if there is no such k, where sopfr = A001414.

Original entry on oeis.org

2, 3, 2, 5, 4, 7, -1, 3, -1, 11, -1, 13, -1, -1, 4, 17, -1, 19, -1, 9, 120, 23, -1, 5, -1, 3, -1, 29, 30, 31, -1, -1, -1, -1, 4, 37, -1, -1, -1, 41, -1, 43, -1, 45, 36, 47, 2, 7, -1, -1, 16, 53, -1, -1, 2, -1, -1, 59, 30, 61, -1, -1, 2, -1, -1, 67, -1, 2745, 70, 71, 60, 73, -1, 150, -1, -1, -1
Offset: 2

Author

Will Gosnell and Robert Israel, Aug 04 2025

Keywords

Comments

a(n) = -1 if n is in A385679. Conjecture: a(n) > 0 if n is not in A385679.
0 < a(n) < n if and only if n is in A385664.
If p is prime, then a(p) = p.

Examples

			a(6) = 4 because sopfr(6) = 5, sopfr(4) = 4, 6^2 == 4 == 0 (mod 4) and 4^2 == 6 == 1 (mod 5), and neither 2 nor 3 works.
		

Crossrefs

Programs

  • Maple
    sopfr:= proc(n) option remember; local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc:
    f:= proc(x) local sx,R,y,X,r,k;
      sx:= sopfr(x);
      R:= sort(map(t -> rhs(op(t)), [msolve(X^2 = x,sx)]));
      if R = [] then return -1 fi;
      for k from 0 do
        for r in R do
          y:= r + k*sx;
          if y < 2 then next fi;
          if x^2 - y  mod sopfr(y) = 0 then return y fi
      od od;
    end proc:
    map(f, [$2 .. 100]);

A385664 Numbers y such that there is at least one x with 2 <= x < y, x^2 == y (mod sopfr(y)) and y^2 == x (mod sopfr(x)), where sopfr = A001414.

Original entry on oeis.org

4, 6, 9, 16, 21, 25, 27, 36, 46, 48, 49, 52, 56, 60, 64, 72, 81, 84, 90, 100, 102, 104, 108, 120, 121, 126, 128, 135, 141, 144, 150, 156, 160, 162, 166, 169, 174, 176, 180, 196, 204, 207, 216, 220, 225, 231, 237, 238, 240, 244, 245, 246, 248, 253, 256, 261, 264, 276, 280, 286, 288, 289, 294, 301
Offset: 1

Author

Will Gosnell and Robert Israel, Aug 03 2025

Keywords

Comments

Contains no primes, but all squares of primes (with y = p^2 for p an odd prime, x = p works). Does the sequence contain all squares > 1?

Examples

			a(5) = 21 is a term because with x = 9, we have sopfr(9) = 6, sopfr(21) = 10, 9^2 == 21 == 0 (mod 10) and 21^2 == 9 (mod 16).
		

Crossrefs

Cf. A001414.

Programs

  • Maple
    spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    filter:= proc(y)
      ormap(x -> x^2 - y mod spf(y) = 0 and y^2 - x mod spf(x) = 0, [$2..y-1])
    end proc:
    select(filter, [$2 .. 500]);

A386640 Numbers k such that k + A224787(k) is a square.

Original entry on oeis.org

1, 225, 270, 1900, 4988, 5656, 6120, 8704, 11180, 16588, 17710, 19228, 24475, 28449, 29458, 32330, 34606, 38088, 39292, 40221, 41181, 42476, 48545, 48640, 53795, 56832, 57288, 64975, 78793, 84925, 86242, 117116, 124135, 128478, 129673, 134044, 136224, 136896, 147149, 150528, 168055, 183141
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 27 2025

Keywords

Comments

Numbers k such that the sum of k and the cubes of the prime factors of k, counted with multiplicity, is a square.

Examples

			a(3) = 270 = 2 * 3^3 * 5 is a term because 270 + 2^3 + 3 * 3^3 + 5^3 =  484 = 22^2 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
       issqr(n + add(t[1]^3*t[2],t=ifactors(n)[2]))
    end proc:
    select(filter, [$1..10^6]);
  • Mathematica
    lim=184000;f[{p_,e_}]:=e*p^3;a224787[k_]:=If[k==1,0,Total[f/@FactorInteger[k]]];q[k_]:=IntegerQ[Sqrt[k+a224787[k]]];Select[Range[lim],q[#]&] (* James C. McMahon, Jul 30 2025 *)

A386623 Numbers k such that k - A224787(k) is a square.

Original entry on oeis.org

1, 64, 630, 1225, 1296, 1750, 1925, 2079, 3125, 3402, 3888, 7150, 11495, 13000, 16445, 16464, 17160, 17500, 25578, 25935, 26082, 27508, 36975, 39083, 42688, 47125, 55955, 57188, 61740, 66671, 85085, 88451, 99372, 104544, 111375, 120736, 122452, 128898, 137547, 141427, 145509, 146927, 152592
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 27 2025

Keywords

Comments

Numbers k such that k is the sum of a square and the cubes of the prime factors of k, counted with multiplicity.
Except for a(1) = 1, all terms are the product of at least 4 (not necessarily distinct) primes.
a(1) = 1 and a(7) = 1925 have k - A224787(k) = 1. Are there any others? - Will Gosnell and Robert Israel, Aug 01 2025

Examples

			a(3) = 630 = 2 * 3^2 * 5 * 7 is a term because 630 - 2^3 - 2 * 3^3 - 5^3 - 7^3 = 100 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
       issqr(n - add(t[1]^3*t[2],t=ifactors(n)[2]))
    end proc:
    select(filter, [$1..10^6]);

A385238 Numbers k such that A224787(k) - k is a square.

Original entry on oeis.org

8, 16, 20, 25, 95, 169, 221, 234, 295, 312, 323, 410, 543, 1027, 1681, 3071, 3419, 3721, 4183, 4352, 6649, 7448, 7979, 8188, 9047, 9200, 10108, 11203, 12769, 15732, 16240, 20303, 22819, 25351, 26291, 28769, 32761, 33728, 42880, 51198, 51338, 52206, 53613, 55303, 56800, 63731, 65567, 71531, 77550
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 28 2025

Keywords

Comments

Numbers k such that the sum of the cubes of the prime factors of k, counted with multiplicity, is k plus a square.
Includes p^2 for p in A027862.

Examples

			a(3) = 20 = 2^2 * 5 is a term because 2*2^3 + 5^3 - 20 = 121 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
       issqr(add(t[1]^3*t[2], t=ifactors(n)[2]) - n)
    end proc:
    select(filter, [$1..10^5]);

A386257 Numbers k such that k + A067666(k) is a square.

Original entry on oeis.org

1, 15, 80, 192, 1472, 1482, 1512, 1539, 1938, 2090, 2197, 2370, 2805, 3045, 4095, 4356, 4557, 5796, 5978, 6018, 6156, 7130, 7920, 11445, 12125, 12852, 13578, 13800, 15435, 20405, 26562, 29375, 29592, 30996, 31141, 31682, 32205, 42975, 45733, 46060, 49218, 50652, 51645, 51834, 52767, 54272, 55272
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 16 2025

Keywords

Comments

Numbers k such that the sum of k and the squares of its prime factors with multiplicity is a square.
The only term that is a semiprime is 15.
The generalized Bunyakovsky conjecture implies that there are infinitely many pairs of primes (p,q) with 4 * q = 21 * p^2 - 10 * p - 99. For such p and q, 5*p*q is a term.

Examples

			a(4) = 192 is a term because 192 = 2^6 * 3 and 192 + 6 * 2^2 + 3^2 = 225 = 15^2 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
      issqr(n + add(t[1]^2*t[2],t=ifactors(n)[2]))
    end proc:
    select(filter, [$1..10^5]);
  • Mathematica
    spf[{p_,e_}]:=e*p^2;Q[k_]:=IntegerQ[Sqrt[k+Total[spf/@FactorInteger[k]]]];Join[{1},Select[Range[56000],Q[#]&]] (* James C. McMahon, Jul 23 2025 *)
  • PARI
    isok(k) = my(f=factor(k)); issquare(k + sum(i=1, #f~, f[i, 1]^2*f[i, 2])); \\ Michel Marcus, Jul 20 2025

A386304 Numbers k such that k - A067666(k) is a square.

Original entry on oeis.org

1, 16, 27, 75, 128, 343, 475, 600, 663, 715, 759, 1015, 1845, 2679, 3717, 3933, 4440, 5083, 5325, 5467, 6120, 6210, 6325, 6405, 6859, 7029, 8349, 8541, 8664, 9125, 9960, 12045, 12427, 12535, 13509, 15067, 16677, 18693, 18711, 21783, 22797, 23250, 23560, 24605, 25527, 26496, 26967, 27117, 28557
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 17 2025

Keywords

Comments

Numbers k such that k minus the sum of the squares of its prime factors with multiplicity is a square.
Is there any number other than 1 in both this sequence and A386257?
Contains no semiprimes.

Examples

			a(4) = 75 is a term because 75 = 3 * 5^2 and 75 - 3^2 - 2 * 5^2 = 16 = 4^2 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
      issqr(n - add(t[1]^2*t[2], t=ifactors(n)[2]))
    end proc:
    select(filter, [$1..10^5]);
  • Mathematica
    spf[{p_,e_}]:=e*p^2;Q[k_]:=IntegerQ[Sqrt[k-Total[spf/@FactorInteger[k]]]];Select[Range[29000],Q[#]&] (* James C. McMahon, Jul 23 2025 *)
  • PARI
    isok(k) = my(f=factor(k)); issquare(k - sum(i=1, #f~, f[i, 1]^2*f[i, 2])); \\ Michel Marcus, Jul 20 2025

A386228 Primes that are the sum of prime factors (with multiplicity) of a triprime which is the concatenation of three consecutive primes.

Original entry on oeis.org

8539, 11813, 19181, 27827, 45013, 52859, 64621, 64969, 81077, 103583, 105373, 127493, 228203, 264791, 297397, 318161, 324491, 439753, 466247, 480299, 491353, 496631, 561091, 613559, 638431, 678943, 779981, 822631, 827537, 906673, 908893, 1039477, 1046029, 1079927, 1090577, 1176871, 1220327
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 15 2025

Keywords

Comments

Numbers that are the sum of prime factors (with multiplicity) of at least one member of A385968.

Examples

			a(3) = 19181 is a term because 487491499 = A385968(4) is the concatenation of consecutive primes 487, 491, 499 and 487491499 = 11 * 2689 * 16481 with 11 + 2689 + 16481 = 19181 prime.
The only term < 3 * 10^9 that arises in more than one way is
a(756) = 149573911 = 53281 + 121110841 + 28409789
                 = 143597911 + 524453 + 5451547
where 53281 * 121110841 * 28409789 = 183325718332591833269 = A385968(3382)
and 143597911 * 524453 * 5451547 = 410557941055894105601 = A385968(6601).
		

Crossrefs

Cf. A385968.

Programs

  • Maple
    tcat:= proc(a, b, c);
      c + 10^(1+ilog10(c))*(b + 10^(1+ilog10(b))*a)
    end proc:
    xmax:= 10^15: Bmax:= 3*10^6:
    B:= NULL: count:= 0:
    q:= 2: r:= 3:
    do
      p:= q; q:= r; r:= nextprime(r);
      x:= tcat(p, q, r);
      if x > xmax then break fi;
      F:= ifactors(x)[2];
      if add(t[2], t=F) = 3 then
         b:= add(t[1]*t[2], t=F);
         if b <= Bmax and isprime(b) then
           count:= count+1; B:= B, b;
      fi fi;
    od:
    sort(convert({B},list));

A386245 Composite numbers k such that A075255(k) is a square.

Original entry on oeis.org

4, 6, 22, 135, 166, 444, 454, 636, 650, 854, 886, 1086, 1122, 1196, 1431, 1928, 2182, 2244, 2316, 2702, 3046, 3464, 3510, 3770, 4004, 4054, 4125, 4476, 4671, 5052, 5106, 5394, 5450, 6435, 6502, 6750, 8076, 8264, 8500, 9170, 9471, 9726, 10035, 10386, 10648, 10659, 11228, 11495, 11515, 11935, 12732
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 16 2025

Keywords

Comments

Composite numbers k such that k - sopfr(k) is a square, where sopfr(k) is the sum of prime factors of k with multiplicity.
Includes 2*p for p in A056899, but no odd semiprimes.
Is this sequence disjoint from A386246?

Examples

			a(3) = 22 is a term because 22 = 2 * 11 is composite and 22 - (2 + 11) = 9 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
     if isprime(n) then return false fi;
     issqr(n - add(t[1]*t[2],t=ifactors(n)[2]))
    end proc:
    select(filter, [$4..20000]);

A386246 Composite numbers k such that A075254(k) is a square.

Original entry on oeis.org

27, 108, 171, 240, 456, 603, 744, 936, 988, 1424, 1702, 1737, 1820, 1899, 1904, 1989, 2166, 2261, 2366, 2817, 2873, 3283, 3553, 3681, 3728, 3784, 3852, 3894, 4266, 4437, 4700, 4923, 4975, 5005, 5008, 5073, 5117, 5193, 5278, 5356, 5418, 5820, 6050, 6486, 6576, 6627, 6651, 6775, 7947, 8250, 9116
Offset: 1

Author

Will Gosnell and Robert Israel, Jul 16 2025

Keywords

Comments

Composite numbers k such that k + sopfr(k) is a square, where sopfr(k) is the sum of prime factors of k with multiplicity.
Contains no semiprimes.
Includes 9*p if p is a prime of the form (x^2-6)/10 where x == 4 or 6 (mod 10).
Is this sequence disjoint from A386245?

Examples

			a(3) = 171 is a term because 171 = 3^2 * 19 is composite and 171 + 3 + 3 + 19 = 196 = 14^2 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
     if isprime(n) then return false fi;
     issqr(n + add(t[1]*t[2], t=ifactors(n)[2]))
    end proc:
    select(filter, [$4..10000]);