A362973 The number of cubefull numbers (A036966) not exceeding 10^n.
1, 2, 7, 20, 51, 129, 307, 713, 1645, 3721, 8348, 18589, 41136, 90619, 198767, 434572, 947753, 2062437, 4480253, 9718457, 21055958, 45575049, 98566055, 213028539, 460160083, 993533517, 2144335391, 4626664451, 9980028172, 21523027285, 46408635232, 100053270534
Offset: 0
Keywords
Examples
There are 2 cubefull numbers not exceeding 10, 1 and 8, therefore a(1) = 2.
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..36
- Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois Journal of Mathematics, Vol. 2, No. 1 (1958), pp. 88-98.
- A. Ivić and P. Shiu, The distribution of powerful integers, Illinois Journal of Mathematics, Vol. 26, No. 4 (1982), pp. 576-590.
- Ekkehard Krätzel, On the distribution of square-full and cube-full numbers, Monatshefte für Mathematik, Vol. 120, No. 2 (1995), pp. 105-119.
- P. Shiu, The distribution of cube-full numbers, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295.
- P. Shiu, Cube-full numbers in short intervals, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 112, No. 1 (1992), pp. 1-5.
Programs
-
Mathematica
a[n_] := Module[{max = 10^n}, CountDistinct@ Flatten@ Table[i^5 * j^4 * k^3, {i, Surd[max, 5]}, {j, Surd[max/i^5, 4]}, {k, CubeRoot[max/(i^5*j^4)]}]]; Array[a, 15, 0]
-
Python
from math import gcd from sympy import factorint, integer_nthroot def A362973(n): m, c = 10**n, 0 for x in range(1,integer_nthroot(m,5)[0]+1): if all(d<=1 for d in factorint(x).values()): for y in range(1,integer_nthroot(z:=m//x**5,4)[0]+1): if gcd(x,y)==1 and all(d<=1 for d in factorint(y).values()): c += integer_nthroot(z//y**4,3)[0] return c # Chai Wah Wu, May 11-13 2023
Extensions
a(23)-a(31) from Chai Wah Wu, May 11 2023
Comments