A362982 Heinz numbers of partitions such that 2*(least part) < greatest part.
10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 10: {1,3} 44: {1,1,5} 70: {1,3,4} 14: {1,4} 46: {1,9} 74: {1,12} 20: {1,1,3} 50: {1,3,3} 76: {1,1,8} 22: {1,5} 51: {2,7} 78: {1,2,6} 26: {1,6} 52: {1,1,6} 80: {1,1,1,1,3} 28: {1,1,4} 56: {1,1,1,4} 82: {1,13} 30: {1,2,3} 57: {2,8} 84: {1,1,2,4} 33: {2,5} 58: {1,10} 85: {3,7} 34: {1,7} 60: {1,1,2,3} 86: {1,14} 38: {1,8} 62: {1,11} 87: {2,10} 39: {2,6} 66: {1,2,5} 88: {1,1,1,5} 40: {1,1,1,3} 68: {1,1,7} 90: {1,2,2,3} 42: {1,2,4} 69: {2,9} 92: {1,1,9}
Crossrefs
Partitions of this type are counted by A237820.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],2*Min@@prix[#]
Comments