cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362986 a(n) = A000203(A036966(n)), the sum of divisors of the n-th cubefull number A036966(n).

Original entry on oeis.org

1, 15, 31, 40, 63, 127, 121, 156, 255, 600, 364, 511, 400, 1240, 1023, 781, 1815, 1093, 2520, 2340, 2047, 3751, 1464, 5080, 5460, 4836, 4095, 3280, 2380, 2801, 7623, 6000, 3906, 6240, 10200, 11284, 9828, 8191, 5220, 11715, 15367, 12400, 16395, 9841, 7240, 20440
Offset: 1

Views

Author

Amiram Eldar, May 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, Select[Range[10^4], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(sigma(k), ", ")));
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A362986_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e>2 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A362986_list = list(islice(A362986_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

Sum_{A036966(k) < x} a(k) = c * x^(4/3) + O(x^(113/96 + eps)), where c = A362985 * A362974 / 4 = 2.8912833599... (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^4, where c = A362985 / (4 * A362974^3) = 0.006135085083... .

A362984 Decimal expansion of the asymptotic mean of the abundancy index of the powerful numbers (A001694).

Original entry on oeis.org

2, 1, 4, 9, 6, 8, 6, 9, 0, 3, 0, 1, 5, 2, 6, 7, 6, 5, 1, 2, 8, 2, 1, 9, 0, 4, 2, 1, 0, 5, 1, 0, 9, 4, 1, 6, 1, 4, 5, 9, 8, 7, 6, 5, 3, 2, 7, 5, 1, 0, 0, 9, 9, 9, 8, 7, 3, 2, 7, 3, 3, 4, 3, 7, 8, 9, 7, 6, 2, 7, 1, 7, 9, 4, 0, 3, 6, 4, 2, 3, 6, 5, 7, 4, 2, 7, 4, 2, 3, 7, 7, 1, 7, 0, 2, 4, 2, 2, 8, 9, 7, 3, 8, 6, 2
Offset: 1

Views

Author

Amiram Eldar, May 12 2023

Keywords

Comments

The abundancy index of a positive integer k is A000203(k)/k = A017665(k)/A017666(k).
The asymptotic mean of the abundancy index over all the positive integers is lim_{m->oo} (1/m) * Sum_{k=1..m} A000203(k)/k = Pi^2/6 = zeta(2) = 1.644934... (A013661).

Examples

			2.14968690301526765128219042105109416145987653275100999873...
		

Crossrefs

Similar constants (the asymptotic mean of the abundancy index of other sequences): A013661 (all positive integers), A082020 (cubefree), A111003 (odd), A157292 (5-free), A157294 (7-free), A157296 (9-free), A240976 (squares), A245058 (even), A306633 (squarefree), A362985 (cubefull).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{2, -3, 4, -6, 7, -7, 7, -6, 5, -3, 2, -1}, {0, 0, 0, 4, 5, 6, 0, -12, -9, -5, 0, 22}, m]; RealDigits[(2^4 + 2^2 + 2^(3/2) - 1)/(2^4 - 2)*(3^4 + 3^2 + 3^(3/2) - 1)/(3^4 - 3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    prodeulerrat((p^8 + p^4 + p^3 - 1)/(p^8 - p^2), 1/2)

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A180114(k)/A001694(k).
Equals Product_{p prime} (p^4 + p^2 + p^(3/2) - 1)/(p^4 - p) = Product_{p prime} (1 + (p^2 + p^(3/2) + p - 1)/(p^4 - p)) (Jakimczuk and Lalín, 2022).
Showing 1-2 of 2 results.