cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362996 Triangle read by rows. T(n, k) = numerator([x^k] R(n, n, x)), where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).

Original entry on oeis.org

1, 3, 1, 11, 14, 3, 25, 46, 117, 16, 137, 652, 3699, 1344, 125, 49, 568, 19197, 41728, 19375, 1296, 363, 9872, 621837, 2397184, 2084375, 334368, 16807, 761, 23664, 5338467, 17115136, 99109375, 7150032, 6705993, 262144
Offset: 0

Views

Author

Peter Luschny, May 13 2023

Keywords

Examples

			The triangle T(n, k) begins:
[0]   1;
[1]   3,     1;
[2]  11,    14,       3;
[3]  25,    46,     117,       16;
[4] 137,   652,    3699,     1344,      125;
[5]  49,   568,   19197,    41728,    19375,    1296;
[6] 363,  9872,  621837,  2397184,  2084375,  334368,   16807;
[7] 761, 23664, 5338467, 17115136, 99109375, 7150032, 6705993, 262144;
.
The first few polynomials are:
[0]      1
[1]      x   +      3/2
[2]    3*x^2 +    (14/3)*x   +      11/6
[3]   16*x^3 +   (117/4)*x^2 +     (46/3)*x   +     25/12
[4]  125*x^4 +  (1344/5)*x^3 +  (3699/20)*x^2 +   (652/15)*x   + 137/60
[5] 1296*x^5 + (19375/6)*x^4 + (41728/15)*x^3 + (19197/20)*x^2 + (568/5)*x + 49/20
		

Crossrefs

Cf. A362997 (denominator), A001008 (column 0), A000272 (main diagonal), A362995.

Programs

  • SageMath
    def R(n, k, x):
        return add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n
               for j in (0..u)) for u in (0..k))
    def A362996row(n: int) -> list[int]:
        return [r.numerator() for r in R(n, n, x).list()]
    for n in (0..7): print(A362996row(n))

Formula

T(n, k) = A362995(n, k) * A362997(n, k) / lcm(1, 2, ..., n+1).