A362996 Triangle read by rows. T(n, k) = numerator([x^k] R(n, n, x)), where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
1, 3, 1, 11, 14, 3, 25, 46, 117, 16, 137, 652, 3699, 1344, 125, 49, 568, 19197, 41728, 19375, 1296, 363, 9872, 621837, 2397184, 2084375, 334368, 16807, 761, 23664, 5338467, 17115136, 99109375, 7150032, 6705993, 262144
Offset: 0
Examples
The triangle T(n, k) begins: [0] 1; [1] 3, 1; [2] 11, 14, 3; [3] 25, 46, 117, 16; [4] 137, 652, 3699, 1344, 125; [5] 49, 568, 19197, 41728, 19375, 1296; [6] 363, 9872, 621837, 2397184, 2084375, 334368, 16807; [7] 761, 23664, 5338467, 17115136, 99109375, 7150032, 6705993, 262144; . The first few polynomials are: [0] 1 [1] x + 3/2 [2] 3*x^2 + (14/3)*x + 11/6 [3] 16*x^3 + (117/4)*x^2 + (46/3)*x + 25/12 [4] 125*x^4 + (1344/5)*x^3 + (3699/20)*x^2 + (652/15)*x + 137/60 [5] 1296*x^5 + (19375/6)*x^4 + (41728/15)*x^3 + (19197/20)*x^2 + (568/5)*x + 49/20