cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362997 Triangle read by rows. T(n, k) = denominator([x^k] R(n, n, x)), where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 12, 3, 4, 1, 60, 15, 20, 5, 1, 20, 5, 20, 15, 6, 1, 140, 35, 140, 105, 42, 7, 1, 280, 35, 280, 105, 168, 7, 8, 1, 2520, 315, 280, 315, 504, 7, 72, 9, 1, 2520, 315, 280, 315, 504, 35, 360, 45, 10, 1, 27720, 3465, 3080, 3465, 5544, 385, 3960, 495, 110, 11, 1
Offset: 0

Views

Author

Peter Luschny, May 13 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0]    1;
[1]    2,   1;
[2]    6,   3,   1;
[3]   12,   3,   4,   1;
[4]   60,  15,  20,   5,   1;
[5]   20,   5,  20,  15,   6,  1;
[6]  140,  35, 140, 105,  42,  7,   1;
[7]  280,  35, 280, 105, 168,  7,   8,  1;
[8] 2520, 315, 280, 315, 504,  7,  72,  9,  1;
[9] 2520, 315, 280, 315, 504, 35, 360, 45, 10, 1;
		

Crossrefs

Cf. A362996 (numerator), A002805 (column 0), A362995.

Programs

  • SageMath
    def R(n, k, x):
        return add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n
               for j in (0..u)) for u in (0..k))
    def A362997row(n: int) -> list[int]:
        return [r.denominator() for r in R(n, n, x).list()]
    for n in (0..9): print(A362997row(n))

Formula

T(n, k) = lcm(1, 2, ..., n+1) * A362996(n, k) / A362995(n, k).