cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363018 Decimal expansion of Product_{k>=1} (1 - exp(-6*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 3, 4, 8, 7, 5, 8, 7, 8, 2, 1, 5, 0, 8, 5, 8, 7, 4, 4, 1, 6, 2, 7, 0, 6, 1, 2, 4, 3, 1, 0, 8, 3, 3, 0, 5, 0, 8, 1, 3, 6, 0, 9, 7, 2, 3, 6, 6, 2, 0, 8, 7, 0, 2, 3, 9, 0, 6, 6, 2, 3, 9, 9, 5, 9, 4, 1, 5, 9, 1, 8, 8, 8, 6, 5, 1, 9, 7, 6, 6, 3, 5, 5, 9, 6, 5, 6, 8, 6, 9, 2, 9, 8, 1, 8, 2, 8, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2023

Keywords

Examples

			0.999999993487587821508587441627061243108330508136097236620870239066239...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(Pi/4)*Gamma[1/4]*(2 - Sqrt[3])^(1/12)/(2*3^(3/8)*Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-6*Pi)], 10, 120][[1]]

Formula

Equals exp(Pi/4) * Gamma(1/4) * (2 - sqrt(3))^(1/12) / (2 * 3^(3/8) * Pi^(3/4)).
Equals A292888 * A292887.