cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363052 Integers m for which there exist positive integers j, k such that j*k*(j+k) = m^2.

Original entry on oeis.org

4, 18, 24, 32, 36, 50, 60, 108, 140, 144, 150, 192, 252, 256, 288, 300, 360, 392, 400, 480, 486, 500, 540, 588, 648, 780, 816, 864, 882, 900, 972, 1008, 1014, 1050, 1120, 1152, 1156, 1176, 1200, 1350, 1372, 1452, 1536, 1620, 1764, 1800, 1848, 2016, 2040, 2048, 2178
Offset: 1

Views

Author

Zhining Yang, May 15 2023

Keywords

Comments

All terms are even.

Examples

			24 is a term: j*k*(j+k) = 24^2 for j=2, k=16.
		

Crossrefs

Cf. A088915.

Programs

  • Mathematica
    Select[2*Range@500,
     Length@Select[Table[(Sqrt[b^2 + 4 #^2/b] - b)/2, {b, #}], IntegerQ] >
        0 &]
    Select[Union@
      Flatten@Table[Sqrt[a*b (a + b)], {a, 1, 80}, {b, a, 500}],
     IntegerQ[#] && # < 1000 &]
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot, divisors
    def A363052_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            for k in divisors(m**2,generator=True):
                p, q = integer_nthroot(k**4+(k*m**2<<2),2)
                if q:
                    a, b = divmod(p-k**2,k<<1)
                    if a > 0 and not b:
                        yield m
                        break
    A363052_list = list(islice(A363052_gen(),20)) # Chai Wah Wu, Jul 03 2023