A363060 Numbers k such that 5 is the first digit of 2^k.
9, 19, 29, 39, 49, 59, 69, 102, 112, 122, 132, 142, 152, 162, 172, 195, 205, 215, 225, 235, 245, 255, 265, 298, 308, 318, 328, 338, 348, 358, 391, 401, 411, 421, 431, 441, 451, 461, 494, 504, 514, 524, 534, 544, 554, 587, 597, 607, 617, 627, 637, 647, 657, 680, 690
Offset: 1
Examples
k = 9: the first digit of 2^9 = 512 is 5, thus k = 9 is a term.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-283.
- Luboš Pick, On One Application of Irrationality in Search of the Seventh Heaven, Pokroky matematiky, fyziky a astronomie, vol. 67 (2022), 37-44.
- Hermann Weyl, Über die gibbs’sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Matem. Palermo 30 (1910), 377-407.
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins., Mathematische Annalen 77 (1916), 313-352.
Crossrefs
Programs
-
Maple
R:= NULL: count:= 0: t:= 1: for k from 1 while count < 100 do t:= 2*t; if floor(t/10^ilog10(t)) = 5 then R:= R,k; count:= count+1 fi od: R; # Robert Israel, May 19 2023
-
Mathematica
Select[Range[700], IntegerDigits[2^#][[1]] == 5 &] (* Amiram Eldar, May 16 2023 *)
-
PARI
isok(k) = digits(2^k)[1] == 5; \\ Michel Marcus, May 16 2023
-
Python
from itertools import count, islice def A363060_gen(startvalue=1): # generator of terms >= startvalue m = 1<<(k:=max(startvalue,1)) for i in count(k): if str(m)[0]=='5': yield i m <<= 1 A363060_list = list(islice(A363060_gen(),20)) # Chai Wah Wu, May 21 2023
Comments