cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363070 Take the terms 0..n of the infinite Fibonacci word A003849, regard them as a number in Fibonacci base.

Original entry on oeis.org

0, 1, 2, 3, 6, 10, 17, 28, 45, 74, 120, 194, 315, 510, 826, 1337, 2163, 3501, 5665, 9167, 14833, 24000, 38834, 62835, 101669, 164505, 266175, 430681, 696857, 1127538, 1824396, 2951935, 4776331, 7728267, 12504599, 20232867, 32737467, 52970334, 85707802, 138678137, 224385940, 363064078
Offset: 0

Views

Author

Gandhar Joshi, May 16 2023

Keywords

Examples

			0 ->                            0 -> a(0) = 0,
0,1 ->                         01 -> a(1) = 1,
0,1,0 ->                      010 -> a(2) = 2,
0,1,0,0 ->                   0100 -> a(3) = 3,
0,1,0,0,1 ->                01001 -> a(4) = 6,
0,1,0,0,1,0 ->             010010 -> a(5) = 10,
0,1,0,0,1,0,1 ->          0100101 -> a(6) = 17,
0,1,0,0,1,0,1,0 ->       01001010 -> a(7) = 28,
0,1,0,0,1,0,1,0,0 ->    010010100 -> a(8) = 45,
0,1,0,0,1,0,1,0,0,1 -> 0100101001 -> a(9) = 74.
		

Crossrefs

Cf. A003849 (Fibonacci word), A005713, A189920 (Zeckendorf digits).
Cf. A182028.

Programs

  • Python
    # see linked program
    
  • Python
    def aupto(n): # produces n terms, indices 0..n-1
        F1, F, a = [0], [0, 1], [0, 1]
        while len(F) < n:
            F1, F = F, F+F1
        [a.append(a[-2]+a[-1]+F[i]+F[i-1]) for i in range(2, n)]
        return a
    print(aupto(42)) # Michael S. Branicky, May 17 2023

Formula

a(n) = Sum_{i=0..n} A003849(i)*Fibonacci(n-i+2).
a(n) = a(n-1) + a(n-2) + A003849(n) + A003849(n-1).
a(n) = a(n-1) + a(n-2) + A005713(n-1). - Kevin Ryde, May 20 2023