A363070 Take the terms 0..n of the infinite Fibonacci word A003849, regard them as a number in Fibonacci base.
0, 1, 2, 3, 6, 10, 17, 28, 45, 74, 120, 194, 315, 510, 826, 1337, 2163, 3501, 5665, 9167, 14833, 24000, 38834, 62835, 101669, 164505, 266175, 430681, 696857, 1127538, 1824396, 2951935, 4776331, 7728267, 12504599, 20232867, 32737467, 52970334, 85707802, 138678137, 224385940, 363064078
Offset: 0
Examples
0 -> 0 -> a(0) = 0, 0,1 -> 01 -> a(1) = 1, 0,1,0 -> 010 -> a(2) = 2, 0,1,0,0 -> 0100 -> a(3) = 3, 0,1,0,0,1 -> 01001 -> a(4) = 6, 0,1,0,0,1,0 -> 010010 -> a(5) = 10, 0,1,0,0,1,0,1 -> 0100101 -> a(6) = 17, 0,1,0,0,1,0,1,0 -> 01001010 -> a(7) = 28, 0,1,0,0,1,0,1,0,0 -> 010010100 -> a(8) = 45, 0,1,0,0,1,0,1,0,0,1 -> 0100101001 -> a(9) = 74.
Links
- Gandhar Joshi, Table of n, a(n) for n = 0..1000
- Agnibha Banerjee, Python Program, May 16 2023.
Programs
-
Python
# see linked program
-
Python
def aupto(n): # produces n terms, indices 0..n-1 F1, F, a = [0], [0, 1], [0, 1] while len(F) < n: F1, F = F, F+F1 [a.append(a[-2]+a[-1]+F[i]+F[i-1]) for i in range(2, n)] return a print(aupto(42)) # Michael S. Branicky, May 17 2023
Formula
a(n) = Sum_{i=0..n} A003849(i)*Fibonacci(n-i+2).
a(n) = a(n-1) + a(n-2) + A005713(n-1). - Kevin Ryde, May 20 2023