A363073 Number of set partitions of [n] such that each element is contained in a block whose block size parity coincides with the parity of the element.
1, 1, 0, 0, 1, 2, 0, 0, 20, 48, 0, 0, 1147, 3968, 0, 0, 173203, 709488, 0, 0, 53555964, 246505600, 0, 0, 28368601065, 148963383616, 0, 0, 24044155851601, 141410718244864, 0, 0, 30934515698084780, 198914201874983936, 0, 0, 57215369885233295955, 398742900995358584320
Offset: 0
Keywords
Examples
a(0) = 1: (), the empty partition. a(1) = 1: 1. a(4) = 1: 1|24|3. a(5) = 2: 135|24, 1|24|3|5. a(8) = 20: 135|2468|7, 135|24|68|7, 137|2468|5, 137|24|5|68, 135|26|48|7, 135|28|46|7, 137|26|48|5, 137|28|46|5, 157|2468|3, 157|24|3|68, 1|2468|357, 1|24|357|68, 1|2468|3|5|7, 1|24|3|5|68|7, 157|26|3|48, 157|28|3|46, 1|26|357|48, 1|28|357|46, 1|26|3|48|5|7, 1|28|3|46|5|7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..672
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, add( `if`((j+t)::even, b(n-j, t)*binomial(n-1, j-1), 0), j=1..n)) end: a:= n-> (h-> b(n-h, 1)*b(h, 0))(iquo(n, 2)): seq(a(n), n=0..40);
-
Mathematica
b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[If[EvenQ[j + t], b[n - j, t]* Binomial[n - 1, j - 1], 0], {j, 1, n}]]; a[n_] := b[n - #, 1]*b[#, 0]&[Quotient[n, 2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)
Comments