cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363075 Number of partitions of n such that 3*(least part) + 1 = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 6, 6, 10, 12, 18, 20, 27, 32, 42, 47, 59, 67, 85, 94, 113, 126, 152, 169, 198, 220, 257, 282, 326, 359, 413, 452, 512, 563, 639, 695, 781, 853, 958, 1041, 1161, 1261, 1402, 1524, 1685, 1827, 2021, 2186, 2407, 2604, 2861, 3088, 3385, 3657, 4002, 4316, 4704, 5069, 5531
Offset: 1

Views

Author

Seiichi Manyama, May 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(3*k - 2))*(1 - x^(3*k - 1))*(1 - x^(3*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(4*k + 1)/(1 - x^k)/(1 - x^(3*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 19 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(4*k+1)/prod(j=k, 3*k+1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(4*k+1)/Product_{j=k..3*k+1} (1-x^j).
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 0.33761... - Vaclav Kotesovec, Jun 20 2025

A363077 Number of partitions of n such that 5*(least part) + 1 = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 14, 21, 27, 37, 46, 63, 75, 97, 119, 149, 178, 222, 260, 317, 373, 447, 520, 620, 713, 839, 965, 1123, 1282, 1488, 1687, 1939, 2196, 2508, 2826, 3220, 3610, 4087, 4578, 5157, 5755, 6472, 7199, 8060, 8953, 9991, 11069, 12330, 13625, 15134, 16708, 18508
Offset: 1

Views

Author

Seiichi Manyama, May 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(5*k - 4))*(1 - x^(5*k - 3))*(1 - x^(5*k - 2))*(1 - x^(5*k - 1))*(1 - x^(5*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(6*k + 1)/(1 - x^k)/(1 - x^(5*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 19 2025 *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k+1)/prod(j=k, 5*k+1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(6*k+1)/Product_{j=k..5*k+1} (1-x^j).

A363276 Number of partitions of n such that 4*(least part) <= greatest part.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 7, 12, 19, 29, 42, 61, 85, 119, 161, 217, 288, 380, 496, 643, 826, 1055, 1340, 1695, 2129, 2663, 3316, 4113, 5084, 6260, 7681, 9394, 11456, 13929, 16892, 20428, 24646, 29658, 35618, 42669, 51021, 60872, 72496, 86165, 102239, 121078, 143171, 168995, 199187, 234380, 275414
Offset: 1

Views

Author

Seiichi Manyama, May 27 2023

Keywords

Crossrefs

Formula

G.f.: Sum_{i>=1} Sum_{j>=0} x^(5*i+j) /Product_{k=i..4*i+j} (1-x^k).
Showing 1-3 of 3 results.