cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363084 Numbers k such that sqrt(A007947(k) - A007913(k)) is an integer m > 0.

Original entry on oeis.org

4, 16, 18, 25, 64, 72, 100, 162, 180, 256, 288, 289, 294, 400, 507, 625, 648, 676, 720, 722, 1024, 1152, 1176, 1210, 1369, 1458, 1600, 1620, 2178, 2205, 2500, 2548, 2592, 2646, 2704, 2880, 2888, 3150, 4096, 4225, 4500, 4563, 4608, 4704, 4840, 5202, 5832, 5887
Offset: 1

Views

Author

Michael De Vlieger, Sep 05 2023

Keywords

Comments

Let core(k) = A007913(k) and rad(k) = A007947(k).
Squarefree numbers k imply rad(k) - core(k) = k - k = 0.
Perfect squares k^2 such that rad(k) = m^2+1 and k > 1 imply rad(k^2) - core(k^2) = (m^2+1) - 1 = m^2, with integers k, m.
Generally, if there exists a minimal d such that d | k, k/d = m^2, and rad(k) - d = m^2, then k is in the sequence.
Subsets of this sequence include the sets of squares k^2 such that k is in A002496, A003592, and A089653, since A089653 contains both A002496 and A003592.

Examples

			a(1) = 4 since rad(4) = 1+1; rad(4) - core(4) = 2 - 1 = 1, a nonzero square.
a(2) = 18 since 18/2 = 9, and rad(18) - core(18) = 6 - 2 = 4, a nonzero square, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6000], And[IntegerQ[#], # > 0] &[Sqrt[Times @@ FactorInteger[#][[All, 1]] - (Sqrt[#] /. (c_ : 1)*a_^(b_ : 0) :> (c*a^b)^2)] ] &]
  • PARI
    isok(k) = my(s=factorback(factorint(k)[, 1])-core(k)); (s>0) && issquare(s); \\ Michel Marcus, Sep 18 2023
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    from sympy import factorint
    def A363084_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            a, b = 1, 1
            for p, e in factorint(k).items():
                if e&1:
                    a *= p
                else:
                    b *= p
            if b>1 and is_square(a*(b-1)):
                yield k
    A363084_list = list(islice(A363084_gen(),30)) # Chai Wah Wu, Sep 19 2023