A363084 Numbers k such that sqrt(A007947(k) - A007913(k)) is an integer m > 0.
4, 16, 18, 25, 64, 72, 100, 162, 180, 256, 288, 289, 294, 400, 507, 625, 648, 676, 720, 722, 1024, 1152, 1176, 1210, 1369, 1458, 1600, 1620, 2178, 2205, 2500, 2548, 2592, 2646, 2704, 2880, 2888, 3150, 4096, 4225, 4500, 4563, 4608, 4704, 4840, 5202, 5832, 5887
Offset: 1
Keywords
Examples
a(1) = 4 since rad(4) = 1+1; rad(4) - core(4) = 2 - 1 = 1, a nonzero square. a(2) = 18 since 18/2 = 9, and rad(18) - core(18) = 6 - 2 = 4, a nonzero square, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3170 (all terms less than 2^28.)
Programs
-
Mathematica
Select[Range[6000], And[IntegerQ[#], # > 0] &[Sqrt[Times @@ FactorInteger[#][[All, 1]] - (Sqrt[#] /. (c_ : 1)*a_^(b_ : 0) :> (c*a^b)^2)] ] &]
-
PARI
isok(k) = my(s=factorback(factorint(k)[, 1])-core(k)); (s>0) && issquare(s); \\ Michel Marcus, Sep 18 2023
-
Python
from itertools import count, islice from sympy.ntheory.primetest import is_square from sympy import factorint def A363084_gen(startvalue=1): # generator of terms >= startvalue for k in count(max(startvalue,1)): a, b = 1, 1 for p, e in factorint(k).items(): if e&1: a *= p else: b *= p if b>1 and is_square(a*(b-1)): yield k A363084_list = list(islice(A363084_gen(),30)) # Chai Wah Wu, Sep 19 2023
Comments