cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363096 Number of partitions of n whose least part is a multiple of 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 3, 2, 3, 3, 4, 7, 7, 8, 10, 11, 15, 16, 19, 22, 27, 34, 39, 46, 54, 63, 76, 86, 101, 117, 136, 161, 186, 214, 249, 287, 335, 384, 445, 509, 588, 677, 776, 888, 1020, 1163, 1334, 1519, 1735, 1975, 2253, 2564, 2917, 3312, 3762, 4265, 4842, 5477, 6203, 7012, 7928
Offset: 1

Views

Author

Seiichi Manyama, May 19 2023

Keywords

Comments

In general, for m > 0, if g.f. = Sum_{k>=1} x^(m*k)/Product_{j>=m*k} (1-x^j), then a(n) ~ Pi^(m-1) * (m-1)! * exp(Pi*sqrt(2*n/3)) / (2^(3/2) * 6^(m/2) * n^((m+1)/2)) * (1 - (m*(m+1)/(4*Pi) + (6*m^2 + 18*m + 1 + c)*Pi/144)/sqrt(n/6)), where c = 0 for m > 1 and c = -24 for m = 1. - Vaclav Kotesovec, May 21 2023

Crossrefs

Programs

  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[x^(5*k)/QPochhammer[x^(5*k), x], {k, 1, nmax/5}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 20 2023 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=5*k, N, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(5*k)/Product_{j>=5*k} (1-x^j).
a(n) ~ Pi^4 * exp(Pi*sqrt(2*n/3)) / (2*3^(3/2)*n^3) * (1 - (15*sqrt(6)/(2*Pi) + 241*Pi*sqrt(6)/144) / sqrt(n)). - Vaclav Kotesovec, May 21 2023