cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A359670 Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 21, 12, 1, 14, 62, 68, 20, 1, 24, 162, 284, 170, 30, 1, 40, 384, 998, 970, 360, 42, 1, 64, 855, 3092, 4410, 2720, 679, 56, 1, 100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1, 154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1, 232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

Related identity: 0 = Sum_{-oo..+oo} (-1)^n * x^n * (y + x^n)^n, which holds formally for all y.
T(n,0) = A015128(n), the number of overpartitions of n, for n >= 0.
T(n+1,1) = A022571(n), the coefficient of x^n in Product_{m>=1} (1 + x^m)^6, for n >= 0.
A359711(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A359712(n) = Sum_{k=0..n} T(n,k)*2^k for n >= 0.
A359713(n) = Sum_{k=0..n} T(n,k)*3^k for n >= 0.
A363104(n) = Sum_{k=0..n} T(n,k)*4^k for n >= 0.
A363105(n) = Sum_{k=0..n} T(n,k)*5^k for n >= 0.
A359714(n) = T(2*n,n) for n >= 0 (central terms).
A359715(n) = T(n+2,2) for n >= 0.
A359718(n) = T(n+3,3) for n >= 0.
A363142(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0. - Paul D. Hanna, May 18 2023
From Paul D. Hanna, May 20 2023: (Start)
A363182(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 2^(n-2*k) for n >= 0.
A363183(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 3^(n-2*k) for n >= 0.
A363184(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 4^(n-2*k) for n >= 0.
A363185(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 5^(n-2*k) for n >= 0. (End)

Examples

			G.f.: A(x,y) = 1 + x*(2 + y) + x^2*(4 + 6*y + y^2) + x^3*(8 + 21*y + 12*y^2 + y^3) + x^4*(14 + 62*y + 68*y^2 + 20*y^3 + y^4) + x^5*(24 + 162*y + 284*y^2 + 170*y^3 + 30*y^4 + y^5) + x^6*(40 + 384*y + 998*y^2 + 970*y^3 + 360*y^4 + 42*y^5 + y^6) + x^7*(64 + 855*y + 3092*y^2 + 4410*y^3 + 2720*y^4 + 679*y^5 + 56*y^6 + y^7) + x^8*(100 + 1806*y + 8724*y^2 + 17172*y^3 + 15627*y^4 + 6608*y^5 + 1176*y^6 + 72*y^7 + y^8) + x^9*(154 + 3648*y + 22904*y^2 + 59545*y^3 + 74682*y^4 + 47089*y^5 + 14392*y^6 + 1908*y^7 + 90*y^8 + y^9) + x^10*(232 + 7110*y + 56679*y^2 + 188700*y^3 + 311530*y^4 + 271698*y^5 + 125160*y^6 + 28764*y^7 + 2940*y^8 + 110*y^9 + y^10) + ...
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 0, k = 0..n, begins
[1];
[2, 1];
[4, 6, 1];
[8, 21, 12, 1];
[14, 62, 68, 20, 1];
[24, 162, 284, 170, 30, 1];
[40, 384, 998, 970, 360, 42, 1];
[64, 855, 3092, 4410, 2720, 679, 56, 1];
[100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1];
[154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1];
[232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1];
[344, 13434, 133516, 556085, 1169100, 1342684, 860664, 300888, 53640, 4345, 132, 1];
[504, 24702, 301664, 1542640, 4029237, 5884160, 4980320, 2438712, 666240, 94490, 6204, 156, 1];
[728, 44361, 657368, 4065868, 12940766, 23411339, 25215416, 16367874, 6302148, 1377464, 158708, 8606, 182, 1];
[1040, 78006, 1387854, 10253720, 39153924, 85994062, 114672768, 94919382, 48660900, 15071628, 2687454, 256022, 11648, 210, 1]; ...
RELATED SERIES.
Given g.f. F(x) of A361770, where
F(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 510*x^4 + 3498*x^5 + 25145*x^6 + 186972*x^7 + 1426159*x^8 + 11096944*x^9 + 87736474*x^10 + ... + A361770(n)*x^n + ...
then
(1) F(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * F(x)^k,
(2) F(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^2 + x^(n-1))^(n+1).
Given g.f. G(x) of A363135, where
G(x) = 1 + 3*x + 17*x^2 + 133*x^3 + 1201*x^4 + 11796*x^5 + 122192*x^6 + 1314266*x^7 + 14536760*x^8 + 164299909*x^9 + ... + A363135(n)*x^n + ...
then
(1) G(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * G(x)^(2*k),
(2) G(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^3 + x^(n-1))^(n+1).
		

Crossrefs

Cf. A359711 (row sums), A359712 (y=2), A359713 (y=3), A363104(y=4), A363105 (y=5).
Cf. A359714 (central terms), A359715 (column 2), A359718 (column 3).

Programs

  • PARI
    {T(n,k) = my(A=1); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( polcoeff( A,n,x),k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); polcoeff( A[n+1],k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k may be described as follows.
(1) y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).
(2) x*y = Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^(n+1).
(3) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n-1).
(4) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^n ].
(5) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^(n+1))^n ].
From Paul D. Hanna, May 18 2023: (Start)
(6) y = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (y*A(x,y) + x^n)^n.
(7) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (y*A(x,y) + x^n)^n ].
(8) x*y = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (y*A(x,y) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^n. (End)

A359712 a(n) = coefficient of x^n in A(x) such that 2 = Sum_{n=-oo..+oo} (-x)^n * (2*A(x) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 4, 20, 106, 586, 3356, 19728, 118382, 722208, 4466050, 27931600, 176371300, 1122867012, 7199842666, 46454345844, 301384205640, 1964899532794, 12866563846920, 84585757496444, 558060746899684, 3693810227983576, 24521903234307786, 163234951757526400
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 20*x^2 + 106*x^3 + 586*x^4 + 3356*x^5 + 19728*x^6 + 118382*x^7 + 722208*x^8 + 4466050*x^9 + 27931600*x^10 +  ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,y=2); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( A,n,x)}
    for(n=0,25, print1( a(n),", "))
    
  • PARI
    {a(n) = my(A=[1],y=2); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^(n-1))^(n+1).
(2) 2*x = Sum_{n=-oo..+oo} (-1)^n * (2*x*A(x) + x^n)^(n+1).
(3) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^(n-1).
(4) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * (2*x*A(x) + x^n)^n ].
(5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 2*A(x)*x^(n+1))^n ].
From Paul D. Hanna, May 12 2023: (Start)
(6) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (2*A(x) + x^n)^n.
(7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (2*A(x) + x^n)^n ].
(8) 2*x = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (2*A(x) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^n. (End)
a(n) = Sum_{k=0..n} A359670(n,k)*2^k for n >= 0.

A359711 a(n) = coefficient of x^n in A(x) such that 1 = Sum_{n=-oo..+oo} (-x)^n * (A(x) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 3, 11, 42, 165, 671, 2795, 11877, 51286, 224413, 992924, 4434833, 19969030, 90550829, 413148619, 1895338362, 8737219074, 40452543831, 188025758635, 877055405522, 4104269624748, 19262955163275, 90652992751518, 427681283728070, 2022341915324936, 9583224591208298
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

Row sums of triangle A359670.

Examples

			G.f.: A(x) = 1 + 3*x + 11*x^2 + 42*x^3 + 165*x^4 + 671*x^5 + 2795*x^6 + 11877*x^7 + 51286*x^8 + 224413*x^9 + 992924*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,y=1); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( A,n,x)}
    for(n=0,25, print1( a(n),", "))
    
  • PARI
    {a(n) = my(A=[1],y=1); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(n-1))^(n+1).
(2) x = Sum_{n=-oo..+oo} (-1)^n * (x*A(x) + x^n)^(n+1).
(3) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)*x^(n+1))^(n-1).
(4) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * (x*A(x) + x^n)^n ].
(5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + A(x)*x^(n+1))^n ].
From Paul D. Hanna, May 18 2023: (Start)
(6) 1 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (A(x) + x^n)^n.
(7) A(x) = -1 / [Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (A(x) + x^n)^n ].
(8) x = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + A*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)*x^n)^n. (End)
a(n) = Sum_{k=0..n} A359670(n,k) for n >= 0.
a(n) ~ c * d^n / n^(3/2), where d = 5.008723344615566939692217... and c = 4.45330627132612826203... - Vaclav Kotesovec, Mar 14 2023

A359713 a(n) = coefficient of x^n in A(x) such that 3 = Sum_{n=-oo..+oo} (-x)^n * (3*A(x) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 5, 31, 206, 1433, 10329, 76459, 577855, 4440538, 34591555, 272545144, 2168118299, 17390330046, 140486973983, 1142036572271, 9335129425718, 76681549612006, 632655728172281, 5240339959916895, 43561574812700958, 363294379940353624, 3038799803831856805
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 31*x^2 + 206*x^3 + 1433*x^4 + 10329*x^5 + 76459*x^6 + 577855*x^7 + 4440538*x^8 + 34591555*x^9 + 272545144*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,y=3); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( A,n,x)}
    for(n=0,25, print1( a(n),", "))
    
  • PARI
    {a(n) = my(A=[1],y=3); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 3 = Sum_{n=-oo..+oo} (-1)^n * x^n * (3*A(x) + x^(n-1))^(n+1).
(2) 3*x = Sum_{n=-oo..+oo} (-1)^n * (3*x*A(x) + x^n)^(n+1).
(3) 3*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 3*A(x)*x^(n+1))^(n-1).
(4) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * (3*x*A(x) + x^n)^n ].
(5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 3*A(x)*x^(n+1))^n ].
a(n) = Sum_{k=0..n} A359670(n,k)*3^k for n >= 0.

A363105 Expansion of g.f. A(x) satisfying 5 = Sum_{n=-oo..+oo} (-x)^n * (5*A(x) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 7, 59, 538, 5149, 51059, 520035, 5407889, 57181230, 612910369, 6644662132, 72731584789, 802696690614, 8922392225233, 99798739026795, 1122441028044882, 12686176392341722, 144013323190860339, 1641303449002365323, 18772674107796041770, 215413772477355781876
Offset: 0

Views

Author

Paul D. Hanna, May 21 2023

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 59*x^2 + 538*x^3 + 5149*x^4 + 51059*x^5 + 520035*x^6 + 5407889*x^7 + 57181230*x^8 + 612910369*x^9 + 6644662132*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1, y=5); for(i=1, n,
    A = 1/sum(m=-#A, #A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( A, n, x)}
    for(n=0, 25, print1( a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1], y=5); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(-y + sum(n=-#A, #A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y), #A-1, x) ); A[n+1]}
    for(n=0, 25, print1( a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 5 = Sum_{n=-oo..+oo} (-1)^n * x^n * (5*A(x) + x^(n-1))^(n+1).
(2) 5 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (5*A(x) + x^n)^n.
(3) 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 5*A(x)*x^(n+1))^(n-1).
(4) 5*x = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 5*A(x)*x^(n+1))^(n+1).
(5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^n * (5*A(x) + x^(n-1))^n ].
(6) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (5*A(x) + x^n)^n ].
(7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 5*A(x)*x^(n+1))^n ].
(8) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (5*A(x) + x^n)^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 5*A(x)*x^n)^n.
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 5*A(x)*x^(n+1))^n.
a(n) = Sum_{k=0..n} A359670(n,k) * 5^k for n >= 0.

A363109 Expansion of g.f. A(x) satisfying 4 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (4*A(x) + x^(n-2))^(n+1).

Original entry on oeis.org

1, 2, 8, 32, 114, 464, 1840, 7424, 30624, 126610, 529832, 2233584, 9471888, 40427152, 173398644, 747197976, 3233336302, 14043404136, 61203859260, 267565075736, 1173030487248, 5156102021680, 22718268675276, 100321210527344, 443919440641296, 1968097221659546
Offset: 0

Views

Author

Paul D. Hanna, May 24 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 32*x^3 + 114*x^4 + 464*x^5 + 1840*x^6 + 7424*x^7 + 30624*x^8 + 126610*x^9 + 529832*x^10 + 2233584*x^11 + 9471888*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], y=4); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(y - sum(n=-#A, #A, (-1)^n * x^(2*n) * (y*Ser(A) + x^(n-2))^(n+1) )/y, #A-1, x) ); A[n+1]}
    for(n=0, 30, print1( a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, y=4); for(i=1, n,
    A = 1/sum(m=-n,n, (-1)^m * x^(2*m) * (y*A + x^(m-2) + x*O(x^n) )^m ) );
    polcoeff( A, n, x)}
    for(n=0, 30, print1( a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 4 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (4*A(x) + x^(n-2))^(n+1).
(2) 4 = Sum_{n=-oo..+oo} (-1)^n * x^(4*n) * (4*A(x) + x^(n-1))^n.
(3) 4*x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 4*A(x)*x^(n+2))^(n-1).
(4) 4*x^2 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 4*A(x)*x^(n+2))^(n+1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (4*A(x) + x^(n-2))^n.
(6) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(3*n-2) * (4*A(x) + x^(n-2))^(n-1).
(7) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^(n+2))^(n+1).
(8) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (4*A(x) + x^(n-1))^n.
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 4*A(x)*x^(n+2))^n.
Showing 1-6 of 6 results.