cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363110 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).

Original entry on oeis.org

1, 1, 2, 4, 10, 28, 88, 306, 1158, 4730, 20722, 96776, 479340, 2507510, 13804014, 79718782, 481614806, 3036358968, 19932689952, 135981543762, 962319171782, 7053068549250, 53458038451082, 418440466421960, 3378290373259300, 28099682071640734, 240537280709926718
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2023

Keywords

Comments

Compare to the following identities, which hold for any fixed b and c:
(1) Sum_{n>=0} x^n * Product_{k=1..n} (b + k*x)/(1 + b*x + k*x^2) = (1 + b*x)/(1 - x^2).
(2) Sum_{n>=0} x^n * Product_{k=1..n} (k + c*x)/(1 + k*x + c*x^2) = (1 + c*x^2)/(1 - x).
(3) Sum_{n>=0} x^n * Product_{k=1..n} (b*k + c*k*x)/(1 + b*k*x + c*k*x^2) = 1/(1 - b*x - c*x^2).
Conjectures:
(1) a(6*n + k) == 0 (mod 4) for n > 0 when k = {0,5},
(2) a(6*n + k) == 2 (mod 4) for n > 0 when k = {1,2,3,4}.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 306*x^7 + 1158*x^8 + 4730*x^9 + 20722*x^10 + 96776*x^11 + 479340*x^12 + ...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1 + 2*x)*(2 + x)/((1 + x + 2*x^2)*(1 + 2*x + x^2)) + x^3*(1 + 3*x)*(2 + 2*x)*(3 + x)/((1 + x + 3*x^2)*(1 + 2*x + 2*x^2)*(1 + 3*x + x^2)) + x^4*(1 + 4*x)*(2 + 3*x)*(3 + 2*x)*(4 + x)/((1 + x + 4*x^2)*(1 + 2*x + 3*x^2)*(1 + 3*x + 2*x^2)*(1 + 4*x + x^2)) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( A = sum(m=0, n, x^m*prod(k=1, m, (k + (m-k+1)*x)/(1 + k*x + (m-k+1)*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be described by the following.
(1) Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).
(2) Sum_{n>=0} x^n * (Sum_{k=0..n} A067948(n,k) * x^k) / Product_{k=1..n} (1 + k*x + (n-k+1)*x^2).