A363115 Expansion of e.g.f. log(1 - log( sqrt(1-2*x) )).
0, 1, 1, 4, 22, 168, 1616, 18800, 256432, 4012288, 70825344, 1392214272, 30157260288, 713680180224, 18319344307200, 506934586748928, 15043324048398336, 476540007615725568, 16050059458251915264, 572710950848334200832, 21582629580640554123264, 856552661738538476765184
Offset: 0
Keywords
Examples
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 22*x^4/4! + 168*x^5/5! + 1616*x^6/6! + 18800*x^7/7! + 256432*x^8/8! + 4012288*x^9/9! + ... where exp(A(x)) = 1 + x + 2*x^2/2 + 4*x^3/3 + 8*x^4/4 + 16*x^5/5 + ... + 2^(n-1)*x^n/n + ...
Programs
-
PARI
{a(n) = n!*polcoeff( log((1 - log(sqrt(1-2*x +x*O(x^n))))),n)} for(n=0,20,print1(a(n),", "))
-
PARI
{a(n) = (-1)^(n-1) * sum(k=1,n, 2^(n-k) * (k-1)! * stirling(n, k, 1) )} for(n=0,20,print1(a(n),", "))
-
PARI
{a(n) = if (n<1, 0, 2^(n-1)*(n-1)! - sum(k=1, n-1, binomial(n-1, k)*(k-1)! * 2^(k-1) * a(n-k)))} for(n=0,20,print1(a(n),", "))
Formula
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined as follows.
(1) A(x) = log(1 - (1/2)*log(1-2*x)).
(2) a(n) = (-1)^(n-1) * Sum_{k=1..n} 2^(n-k) * (k-1)! * Stirling1(n, k) for n > 0.
(3) a(n) = 2^(n-1)*(n-1)! - Sum_{k=1..n-1} binomial(n-1,k) * (k-1)! * 2^(k-1) * a(n-k) for n > 0.