cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363122 Numbers k such that the highest power of 2 dividing k is larger than the highest power of p dividing k for any odd prime p.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 120, 128, 144, 160, 168, 176, 192, 208, 224, 240, 256, 280, 288, 320, 336, 352, 384, 416, 448, 480, 512, 528, 544, 560, 576, 608, 624, 640, 672, 704, 720, 736, 768, 800, 832, 840, 864, 880, 896, 928, 960, 992
Offset: 1

Views

Author

Amiram Eldar, May 16 2023

Keywords

Comments

Numbers k such that A006519(k) = A034699(k).
If k is a term of this sequence then k*2^m is a term for any m >= 0. The primitive terms are in A363123.

Crossrefs

Subsequence of A174973.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2]}, 2^e > Max[Power @@@ FactorInteger[n/2^e]]]; Select[Range[1000], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n>>e); if(m == 1, n>1, f = factor(m); 2^e > vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); }
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A363122_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:n&-n>max((p**e for p, e in factorint(n>>(~n&n-1).bit_length()).items()),default=0),count(max(startvalue,2)))
    A363122_list = list(islice(A363122_gen(),20)) # Chai Wah Wu, May 17 2023