A363122 Numbers k such that the highest power of 2 dividing k is larger than the highest power of p dividing k for any odd prime p.
2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 120, 128, 144, 160, 168, 176, 192, 208, 224, 240, 256, 280, 288, 320, 336, 352, 384, 416, 448, 480, 512, 528, 544, 560, 576, 608, 624, 640, 672, 704, 720, 736, 768, 800, 832, 840, 864, 880, 896, 928, 960, 992
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Module[{e = IntegerExponent[n, 2]}, 2^e > Max[Power @@@ FactorInteger[n/2^e]]]; Select[Range[1000], q]
-
PARI
is(n) = {my(e = valuation(n, 2), m = n>>e); if(m == 1, n>1, f = factor(m); 2^e > vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); }
-
Python
from itertools import count, islice from sympy import factorint def A363122_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:n&-n>max((p**e for p, e in factorint(n>>(~n&n-1).bit_length()).items()),default=0),count(max(startvalue,2))) A363122_list = list(islice(A363122_gen(),20)) # Chai Wah Wu, May 17 2023
Comments