cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A363123 Primitive terms of A363122: terms k of A363122 such that k/2 is not a term of A363122.

Original entry on oeis.org

2, 12, 40, 56, 120, 144, 168, 176, 208, 280, 528, 544, 608, 624, 720, 736, 800, 840, 864, 880, 928, 992, 1008, 1040, 1232, 1456, 1584, 1632, 1824, 1872, 2208, 2288, 2368, 2400, 2624, 2640, 2720, 2752, 2784, 2976, 3008, 3040, 3120, 3136, 3392, 3680, 3696, 3776
Offset: 1

Views

Author

Amiram Eldar, May 16 2023

Keywords

Comments

If k is a term of this sequence then k*2^m is a term of A363122 for any m >= 0.

Crossrefs

Cf. A363122.

Programs

  • Maple
    filter:= proc(n) local F2,Fp,v2,vp, t;
      F2, Fp:= selectremove(t -> t[1]=2, ifactors(n)[2]);
      if Fp = [] then return (n=2) fi;
      v2:= 2^F2[1,2];
      vp:= max(map(t -> t[1]^t[2],Fp));
      v2 > vp and v2/2 <= vp;
    end proc:
    select(filter, [seq(i,i=2.10000,2)]); # Robert Israel, May 18 2023
  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2]}, 2^e > Max[Power @@@ FactorInteger[n/2^e]]]; Select[Range[2, 10000, 2], q[#] && ! q[#/2] &]
  • PARI
    is1(n) = {my(e = valuation(n, 2), m = n>>e); if(m == 1, n>1, f = factor(m); 2^e > vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); } \\ A363122
    is(n) = !(n%2) && is1(n) && !is1(n/2)
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A363123_gen(startvalue=2): # generator of terms
        return filter(lambda n:(m:=n&-n)>max((p**e for p, e in factorint(n>>(~n&n-1).bit_length()).items()),default=1)>=m>>1,count(max(startvalue,2)))
    A363123_list = list(islice(A363123_gen(),20)) # Chai Wah Wu, May 17 2023

A116882 A number k is included if (highest odd divisor of k)^2 <= k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1088, 1152, 1216, 1280, 1344, 1408
Offset: 1

Views

Author

Leroy Quet, Feb 24 2006

Keywords

Comments

Also k is included if (and only if) the greatest power of 2 dividing k is >= the highest odd divisor of k. All terms of the sequence are even besides the 1.
Equivalently, positive integers of the form k*2^m, where odd k <= 2^m. - Thomas Ordowski, Oct 19 2014
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence consists of 1 and all numbers without a superior odd divisor. - Gus Wiseman, Feb 18 2021
Numbers k such that A006519(k) >= A000265(k), with equality only when k = 1. - Amiram Eldar, Jan 24 2023

Examples

			40 = 8 * 5, where 8 is highest power of 2 dividing 40 and 5 is the highest odd dividing 40. 8 is >= 5 (so 5^2 <= 40), so 40 is in the sequence.
		

Crossrefs

The complement is A116883.
Positions of zeros (and 1) in A341675.
A051283 = numbers without a superior prime-power divisor (zeros of A341593).
A059172 = numbers without a superior squarefree divisor (zeros of A341592).
A063539 = numbers without a superior prime divisor (zeros of A341591).
A333805 counts strictly inferior odd divisors.
A341594 counts strictly superior odd divisors.
- Strictly Inferior: A056924, A060775, A070039, A333806, A341596, A341674.
Subsequence of A082662, {1} U A363122.

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], OddQ[ # ] &][[ -1]]; Insert[Select[Range[2, 1500], 2^FactorInteger[ # ][[1]][[2]] > f[ # ] &], 1, 1] (* Stefan Steinerberger, Apr 10 2006 *)
    q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Select[Range[1500], q] (* Amiram Eldar, Jan 24 2023 *)
  • PARI
    isok(n) = vecmax(select(x->((x % 2)==1), divisors(n)))^2 <= n; \\ Michel Marcus, Sep 06 2016
    
  • PARI
    isok(n) = 2^(valuation(n,2)*2) >= n \\ Jeppe Stig Nielsen, Feb 19 2019
    
  • Python
    from itertools import count, islice
    def A116882_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(n&-n)**2>=n,count(max(startvalue,1)))
    A116882_list = list(islice(A116882_gen(),20)) # Chai Wah Wu, May 17 2023

Formula

a(n) = A080075(n-1)-1. - Klaus Brockhaus, Georgi Guninski and M. F. Hasler, Aug 16 2010
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1 + (3/4) * Sum_{k>=1} H(2^k-1)/2^k = 2.3388865091..., where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 24 2023

Extensions

More terms from Stefan Steinerberger, Apr 10 2006

A363063 Positive integers k such that the largest power of p dividing k is larger than or equal to the largest power of q dividing k (i.e., A305720(k,p) >= A305720(k,q)) for all primes p and q with p < q.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 720, 768, 864, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 10368, 11520, 12288, 13824, 16384, 17280, 18432
Offset: 1

Views

Author

Pontus von Brömssen, May 16 2023

Keywords

Comments

Includes all products of terms in A347284, but there are also other terms such as 4320.
Closed under multiplication. - Peter Munn, May 21 2023

Examples

			151200 = 2^5 * 3^3 * 5^2 * 7 is a term, because 2^5 >= 3^3 >= 5^2 >= 7.
72 = 2^3 * 3^2 is not a term, because 2^3 < 3^2.
40 = 2^3 * 3^0 * 5 is not a term, because 3^0 < 5.
From _Michael De Vlieger_, May 19 2023: (Start)
Sequence read as an irregular triangle delimited by appearance of 2^m:
     1
     2
     4
     8     12
    16     24
    32     48
    64     96
   128    144    192
   256    288    384
   512    576    720    768    864
  1024   1152   1440   1536   1728
  2048   2304   2880   3072   3456
  4096   4320   4608   5760   6144   6912
  8192   8640   9216  10368  11520  12288  13824
  ... (End)
		

Crossrefs

Cf. A181818, A305720, A347284, A363098 (primitive terms).
Subsequence of: A087980, {1} U A363122.

Programs

  • Mathematica
    Select[Range[20000], # == 1 || PrimePi[(f = FactorInteger[#])[[-1, 1]]] == Length[f] && Greater @@ (Power @@@ f) &] (* Amiram Eldar, May 16 2023 *)
  • Python
    from sympy import nextprime
    primes = [2] # global list of first primes
    def f(kmax,pi,ppmax):
        # Generate numbers up to kmax with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime.
        if len(primes) <= pi: primes.append(nextprime(primes[-1]))
        p0 = primes[pi]
        ppmax = min(ppmax,kmax)
        if ppmax < p0:
            yield 1
            return
        pp = 1
        while pp <= ppmax:
            for x in f(kmax//pp,pi+1,pp):
                yield pp*x
            pp *= p0
    def A363063_list(kmax):
        return sorted(f(kmax,0,kmax))

A085231 Numbers k in whose canonical factorization the power of the smallest prime factor is greater than the power of the greatest prime factor.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 63, 80, 96, 112, 120, 135, 144, 160, 168, 175, 176, 189, 192, 208, 224, 240, 275, 280, 288, 297, 315, 320, 325, 336, 351, 352, 360, 384, 405, 416, 425, 448, 459, 475, 480, 504, 513, 528, 539, 544, 560, 567, 575, 576, 608, 621, 624
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

p*a(n) is a term for all primes p with A020639(a(n)) < p < A006530(a(n)).

Examples

			The canonical factorization of 240 is 2^4 * 3 * 5. 2^4 = 16 > 5, therefore 240 is a term.
		

Crossrefs

A085233 is a subsequence.
Subsequence of A102749.

Programs

  • Mathematica
    pfgQ[n_]:=Module[{fe=#[[1]]^#[[2]]&/@FactorInteger[n]},fe[[1]]>fe[[-1]]]; Select[Range[700],pfgQ] (* Harvey P. Dale, Dec 11 2017 *)

Formula

A028233(a(n)) > A053585(a(n)).

Extensions

Edited by Peter Munn, Jun 01 2025
Showing 1-4 of 4 results.