Original entry on oeis.org
2, 12, 720, 864, 4320, 21600, 62208, 151200, 311040, 1555200, 7776000, 10886400, 54432000, 381024000, 4191264000, 160030080000, 251475840000, 1760330880000, 11522165760000, 19363639680000, 126743823360000, 251727315840000, 403275801600000, 829595934720000
Offset: 1
4 is in A363063, but is not a term here, because 2 is in A363063 and 2 * 2 = 4.
720 is the first term of A363063 that is divisible by 5, from which we deduce 720 is not a product of nonunit terms of A363063. So 720 is a term here.
A363250
Numbers in A363063 arranged in lexicographic order according to ordered prime signature (i.e., multiplicities of prime power factors p^k, written in order of p).
Original entry on oeis.org
1, 2, 4, 12, 8, 24, 16, 48, 144, 720, 32, 96, 288, 1440, 864, 4320, 21600, 151200, 64, 192, 576, 2880, 1728, 8640, 43200, 302400, 128, 384, 1152, 5760, 3456, 17280, 86400, 604800, 10368, 51840, 259200, 1814400, 256, 768, 2304, 11520, 6912, 34560, 172800, 1209600, 20736, 103680, 518400, 3628800, 62208
Offset: 0
Table of n, a(n), and multiplicities S(j) written such that Product p(j)^S(j) = a(n). a(n) = A000079(i) is shown in the penultimate column, while a(n) = A347284(k) appears in the last column.
n a(n) multiplicities i k
-----------------------------------
0: 1 0 0
1: 2 1 1 1
2: 4 2 2
3: 12 2 1 2
4: 8 3 3
5: 24 3 1 3
6: 16 4 4
7: 48 4 1
8: 144 4 2
9: 720 4 2 1 4
10: 32 5 5
11: 96 5 1
12: 288 5 2
13: 1440 5 2 1
14: 864 5 3
15: 4320 5 3 1
16: 21600 5 3 2
17: 151200 5 3 2 1 5
...
Sequence read as an irregular triangle T(n, k):
n\k 1 2 3 4 5 6 7 8
---------------------------------------------------
0: 1
1: 2
2: 4 12
3: 8 24
4: 16 48 144 720
5: 32 96 288 1440 864 4320 21600 151200
6: 64 192 576 2880 1728 8640 43200 302400
...
-
nn = 12;
f[x_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, x];
{1}~Join~Reap[Do[s = {i}; Sow[2^i]; Set[k, 1];
Do[
If[Prime[k]^s[[-1]] > Prime[k + 1],
AppendTo[s, 1]; k++; Sow[f[s]],
If[Length[s] == 1, Break[],
If[Prime[k - 1]^(s[[-2]]) > Prime[k]^(s[[-1]] + 1),
s[[-1]]++; Sow[f[s]],
While[And[k > 1,
Prime[k - 1]^(s[[-2]]) < Prime[k]^(s[[-1]] + 1)], k--;
s = s[[1 ;; k]]]; If[k == 1, Break[], s[[-1]]++; Sow[f[s]] ]
] ] ], {j, Infinity}], {i, nn}]][[-1, -1]]
-
from sympy import nextprime,oo
from itertools import islice
primes = [2] # global list of first primes
def f(pi, ppmax):
# Generate numbers with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime.
if len(primes) <= pi: primes.append(nextprime(primes[-1]))
p0 = primes[pi]
if ppmax < p0:
yield 1
return
pp = 1
while pp <= ppmax:
for x in f(pi+1, pp):
yield pp*x
pp *= p0
def A363250_list(nterms):
return list(islice(f(0,oo),nterms)) # Pontus von Brömssen, May 25 2023
A347284
a(n) = Product_{j=1..A089576(n)} p_j^e_j with e_j = floor(e_(j-1)*log(p_(j-1))/log(p_j)) where the first factor is 2^n.
Original entry on oeis.org
1, 2, 12, 24, 720, 151200, 302400, 1814400, 4191264000, 8382528000, 251727315840000, 503454631680000, 3020727790080000, 1542111744113740800000, 3084223488227481600000, 92526704646824448000000, 555160227880946688000000, 1110320455761893376000000, 10769764221549079560253440000000
Offset: 0
a(0) = 2^0 = 1;
a(1) = 2^1 = 2, since 3^1 > 2^1;
a(2) = 2^2 * 3^1, since 3^1 < 2^2 but 3^2 > 2^2, and since 5^1 > 3^1;
a(3) = 2^3 * 3^1, since 3^1 < 2^3 but 3^2 > 2^3, and 5^1 > 3^1;
a(4) = 2^4 * 3^2 * 5^1, since 3^2 < 2^4 yet 3^3 > 2^4, 5^1 < 3^2 yet 5^2 > 3^2, and 7^1 > 5^1; etc.
Prime shapes of a(n) for 2 <= n <= 5:
5 o
4 o 4 x
3 o 3 x 3 x x
2 x 2 x 2 x x 2 x x x
a(2) 1 X X a(3) 1 X X a(4) 1 X X X a(5) 1 X X X X
2 3 2 3 2 3 5 2 3 5 7
This demonstrates that a(n) is in A025487, that A002110(A001221(a(n))) is the greatest primorial divisor of a(n) as a consequence (prime divisors represented by capital X's), and Chernoff A006939(A001221(a(n))) | n, prime divisors represented by x's of any case. a(n) = A006939(A001221(a(n))) * k, k in A025487, represented by o's.
Because each multiplicity e is necessarily distinct, we may compactify a(n) using Sum_{k=1..omega(a(n))} 2^(e-1).
Prime shapes of a(12):
12 o
11 o
10 o
9 o
8 o
7 o o
6 x o
5 x x
4 x x x
3 x x x x
2 x x x x x
a(12) 1 X X X X X X
2 3 5 7 ...
a(12) = A006939(6) * 2^6 * 3^2
= 5244319080000 * 64 * 9
= 3020727790080000.
O
O x
O x x
O x x o x x
O x x o x x o x x x
O x o x x x x o x x x o x x x x
a(1)*6 = a(2)*2 = a(3)*30 = a(4)*210 = a(5)*2 = a(6), etc., hence a(n) can be generated by a list of indices of primorials {1, 2, 1, 3, 4, 1, 1, 5, ...} and thereby be efficiently compactified.
-
Array[Times @@ NestWhile[Append[#1, #2^Floor@ Log[#2, #1[[-1]]]] & @@ {#, Prime[Length@ # + 1]} &, {2^#}, Last[#] > 1 &] &, 18, 0] (* or *)
Block[{nn = 2^5, a = {}, b, e, i, m, p}, Array[Set[e[#], 0] &, Floor[2^# If[# <= 4, 1/2, -1 + 2^(7/(3 #))]] &[Ceiling@ Log2@ nn]]; Do[e[1]++; b = {2^e[1]}; Do[If[Last[b] == 1, Break[], i = e[j]; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]; If[i > e[j], e[j]++]], {j, 2, k}]; AppendTo[a, Times @@ b], {k, nn}]; Prepend[a, 1]]
(* Generate up to 4096 terms from the bitmap image *)
With[{r = ImageData@ Import["https://oeis.org/A347284/a347284.png"]}, {1}~Join~Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ Position[r[[i]], 0.][[All, 1]]], {i, 20}]]
(* Generate up to 10000 terms using b-file at A347354 (numbers are large as n increases, limit nn is set to 120): *)
Block[{nn = 120, s, m}, s = Import["https://oeis.org/A347354/b347354.txt", "Data"][[1 ;; nn, -1]]; m = Prime@ Range@ Max[s]; {1}~Join~FoldList[Times, Map[Times @@ m[[1 ;; #]] &, s]]] (* Michael De Vlieger, Sep 25 2021 *)
A057715
Numbers m = Product p_i^{e_i}, not a power of a prime, such that p_j^{e_j} > p_k^{e_k} for all p_j < p_k.
Original entry on oeis.org
12, 24, 40, 45, 48, 56, 63, 80, 96, 112, 135, 144, 160, 175, 176, 189, 192, 208, 224, 275, 288, 297, 320, 325, 351, 352, 384, 405, 416, 425, 448, 459, 475, 513, 539, 544, 567, 575, 576, 608, 621, 637, 640, 675, 704, 720, 736, 768, 800, 832, 833, 864, 875
Offset: 1
720 is included because 720 = 2^4 * 3^2 * 5^1 and 2^4 > 3^2 > 5^1.
A363234
Least number divisible by the first n primes whose factorization into maximal prime powers, if ordered by increasing prime divisor, then has these prime power factors in decreasing order.
Original entry on oeis.org
1, 2, 12, 720, 151200, 4191264000, 251727315840000, 1542111744113740800000, 10769764221549079560253440000000, 12109394351419848024974600399142912000000000, 78344066654781231654807043124290195568885760000000000, 188552692884723759943358058475004257579791386442930585600000000000
Offset: 0
Table shows a(n) = A347284(j) = Product p(i)^m(i), m(i) is the i-th term read from left to right, delimited by ".", in row a(n) of A067255. Example: "4.2.1" signifies 2^4 * 3^2 * 5^1 = 720.
n j A067255(a(n)) a(n)
-------------------------------------------------------------
0 0 1
1 1 1 2
2 2 2.1 12
3 4 4.2.1 720
4 5 5.3.2.1 151200
5 8 8.5.3.2.1 4191264000
6 10 10.6.4.3.2.1 251727315840000
7 13 13.8.5.4.3.2.1 1542111744113740800000
8 18 18.11.7.5.4.3.2.1 10769764221549079560253440000000
...
-
nn = 120; a[0] = {0}; Do[b = {2^k}; Do[If[Last[b] == 1, Break[], i = 1; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]], {j, 2, k}]; Set[a[k], b], {k, nn}]; s = DeleteCases[Array[a, nn], 1, {2}]; {1}~Join~Table[Times @@ s[[FirstPosition[s, _?(Length[#] == k &)][[1]]]], {k, Max[Length /@ s]}]
(* Generate terms from the linked image. Caution, terms become very large. *)
img = Import["https://oeis.org/A363234/a363234.png", "Image"]; Map[Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ #] &, SplitBy[Position[ImageData[img][[1 ;; 12]], 0.], First][[All, All, -1]] ]
-
a(n) = {resf = matrix(n, 2); resf[,1] = primes(n)~; resf[n, 2] = 1; forstep(j = n-1, 1, -1, resf[j, 2] = logint(resf[j+1, 1]^resf[j+1, 2], resf[j, 1]) + 1); factorback(resf)} \\ David A. Corneth, May 24 2023
A363235
a(0) = 1; let e be the largest multiplicity such that p^e | a(n); for n>0, a(n) = Sum_{j=1..k} 2^(e(j)-1) where k is the index of the greatest power factor p(k)^e(k) such that p(k-1)^e(k-1) > p(k)^(e(k)+1).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 144, 145, 146, 147, 148, 149, 150, 151, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267
Offset: 0
a(1) = 1 since 2^1 is a product of the smallest primes p(i) whose prime power factors decrease as i increases; Hence a(1) = 2^(e(i)-1) = 1.
a(2) = 2 since we can find no power 3^e with e>=1 that is smaller than 2^1, we increment the exponent of 2 and have 2^2, hence a(2) = 2^(e(i)-1) = 2.
a(3) = 3 since indeed we may multiply 2^2 by 3^1; 2^2 > 3^1, hence Sum_{i=1..2} 2^(e(i)-1) = 2^1 + 2^0 = 2+1 = 3.
Table relating this sequence to A363250.
b(n) = A363250(n), f(n) = A067255(n), g(n) = A272011(n), with the latter two
n b(n) f(b(n)) a(n) g(a(n))
------------------------------------
1 1 0 0 -
2 2 1 1 0
3 4 2 2 1
4 12 2,1 3 1,0
5 8 3 4 2
6 24 3,1 5 2,0
7 16 4 8 3
8 48 4,1 9 3,0
9 144 4,2 10 3,1
10 720 4,2,1 11 3,1,0
11 32 5 16 4
12 96 5,1 17 4,0
13 288 5,2 18 4,1
14 1440 5,2,1 19 4,1,0
15 864 5,3 20 4,2
16 4320 5,3,1 21 4,2,0
17 21600 5,3,2 22 4,2,1
18 151200 5,3,2,1 23 4,2,1,0
19 64 6 32 5
...
Therefore, a(18) = 23 = 2^4 + 2^2 + 2^1 + 2^0 since b(18) = 151200 = 2^5 * 3^3 * 5^2 * 7^1.
The sequence is a series of intervals, organized so as to begin with 2^k, that begin as follows:
0
1
2..3
4..5
8..11
16..23
32..39
64..75
128..139 144..151
256..267 272..279
512..523 528..535 544..559
1024..1035 1040..1047 1056..1071
2048..2059 2064..2071 2080..2095 2112..2127
...
-
Select[Range[0, 300], AllTrue[Differences@ MapIndexed[Prime[First[#2]]^#1 &, Length[#] - Position[#, 1][[All, 1]] &@ IntegerDigits[#, 2] + 1], # < 0 &] &]
Showing 1-6 of 6 results.
Comments