cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A347356 a(n) = m/A006939(A001221(m)) with m = A347284(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 24, 24, 48, 48, 96, 576, 576, 1152, 34560, 207360, 414720, 414720, 829440, 174182400, 1045094400, 2090188800, 2090188800, 2090188800, 4180377600, 25082265600, 25082265600, 50164531200, 1504935936000, 3009871872000, 18059231232000
Offset: 1

Views

Author

Michael De Vlieger, Oct 02 2021

Keywords

Examples

			Diagram of prime power decomposition of A347284(12) = 2^12 * 3^7 * 5^4 * 7^3 * 11^2 * 13, showing Chernoff number A006939(6) with "x" and "X", A002110(A347354(12)) with "X", and a(12) with "o":
          12  o
          11  o
          10  o
           9  o
           8  o
           7  o o
           6  x o
           5  x x
           4  x x x
           3  x x x x
           2  x x x x x
           1  X X X X X X
              2 3 5 7 ...
A347284(12) = A006939(6) * a(12)
          = 5244319080000 * 576
          = 3020727790080000.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 31, a = {}, b, c, e, i, p}, Array[Set[e[#], 0] &, Floor[2^# If[# <= 4, 1/2, -1 + 2^(7/(3 #))]] &[Ceiling@ Log2@ nn]]; Do[e[1]++; b = {2^e[1]}; c = {e[1]}; Do[If[Last[b] == 1, Break[], i = e[j]; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]; AppendTo[c, (i - 1)]; If[i > e[j], e[j]++]], {j, 2, k}]; AppendTo[a, If[First[#] == 0, 1, Times @@ MapIndexed[Prime[First[#2]]^#1 &, TakeWhile[#, # > 0 &]]] &[# - Range[Length[#], 1, -1]] &@ If[k > 2, Most@ c, c]], {k, nn}]; a]

Formula

a(n) = A347284(n)/A006939(A089576(n)).

A363063 Positive integers k such that the largest power of p dividing k is larger than or equal to the largest power of q dividing k (i.e., A305720(k,p) >= A305720(k,q)) for all primes p and q with p < q.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 720, 768, 864, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 10368, 11520, 12288, 13824, 16384, 17280, 18432
Offset: 1

Views

Author

Pontus von Brömssen, May 16 2023

Keywords

Comments

Includes all products of terms in A347284, but there are also other terms such as 4320.
Closed under multiplication. - Peter Munn, May 21 2023

Examples

			151200 = 2^5 * 3^3 * 5^2 * 7 is a term, because 2^5 >= 3^3 >= 5^2 >= 7.
72 = 2^3 * 3^2 is not a term, because 2^3 < 3^2.
40 = 2^3 * 3^0 * 5 is not a term, because 3^0 < 5.
From _Michael De Vlieger_, May 19 2023: (Start)
Sequence read as an irregular triangle delimited by appearance of 2^m:
     1
     2
     4
     8     12
    16     24
    32     48
    64     96
   128    144    192
   256    288    384
   512    576    720    768    864
  1024   1152   1440   1536   1728
  2048   2304   2880   3072   3456
  4096   4320   4608   5760   6144   6912
  8192   8640   9216  10368  11520  12288  13824
  ... (End)
		

Crossrefs

Cf. A181818, A305720, A347284, A363098 (primitive terms).
Subsequence of: A087980, {1} U A363122.

Programs

  • Mathematica
    Select[Range[20000], # == 1 || PrimePi[(f = FactorInteger[#])[[-1, 1]]] == Length[f] && Greater @@ (Power @@@ f) &] (* Amiram Eldar, May 16 2023 *)
  • Python
    from sympy import nextprime
    primes = [2] # global list of first primes
    def f(kmax,pi,ppmax):
        # Generate numbers up to kmax with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime.
        if len(primes) <= pi: primes.append(nextprime(primes[-1]))
        p0 = primes[pi]
        ppmax = min(ppmax,kmax)
        if ppmax < p0:
            yield 1
            return
        pp = 1
        while pp <= ppmax:
            for x in f(kmax//pp,pi+1,pp):
                yield pp*x
            pp *= p0
    def A363063_list(kmax):
        return sorted(f(kmax,0,kmax))

A347354 a(n) = sum of T(n,k) - T(n-1,k) for row n of A347285.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 2, 5, 1, 6, 1, 2, 7, 1, 3, 2, 1, 8, 1, 4, 2, 1, 9, 10, 1, 2, 11, 1, 3, 1, 2, 12, 1, 4, 13, 1, 2, 1, 14, 15, 1, 2, 3, 1, 6, 2, 1, 4, 1, 16, 2, 1, 17, 18, 1, 2, 1, 3, 5, 1, 2, 19, 1, 4, 2, 1, 20, 1, 3, 21, 1, 2, 22, 1, 9, 1, 2, 4, 1, 8, 2, 1, 3
Offset: 1

Views

Author

Michael De Vlieger, Sep 16 2021

Keywords

Comments

If for row n, k > A089576(n-1), we interpret T(n-1,k) = 0.
Also the length of d = T(n,k) - T(n-1,k) in row n of A347285 such that d > 1, with 0 <= d <= 1.
Compactification of A347284 via indices k of primorials A002110(k). This is the most efficient compactification of A347284, superior to binary compactification via A347287. It employs the fact that A347284 concerns products of primorials, i.e., is a subset of A025487.
We can construct row n of A347285 by summing a constant array of a(k) 1's for 1 <= k <= n-1.

Examples

			Relation of a(n) and irregular triangle A347285, placing "." after the term in the current row where T(n,k) no longer exceeds T(n-1,k). Since the rows of A347285 reach a fixed point of 0, we interpret T(n,k) for vacant T(n-1,k) as exceeding same.
n    Row n of A347285   a(n)
-----------------------------
0:    0
1:    1.                   1
2:    2  1.                2
3:    3. 1                 1
4:    4  2  1.             3
5:    5  3  2  1.          4
6:    6. 3  2  1           1
7:    7  4. 2  1           2
8:    8  5  3  2  1.       5
9:    9. 5  3  2  1        1
10:  10  6  4  3  2  1.    6
...
a(3) = 1 since row 3 of A347285 has {3,1} while row 2 has {2,1}; only the first term of the former exceeds the analogous term in the latter.
a(4) = 3 since row 4 = {4,2,1} and row 3 = {3,1}; all 3 terms of the former are larger than the analogous term in the latter, etc.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 84, a = {0}, c, e, m}, e[1] = 0; Do[c = 1; e[1]++; Do[Set[m, j]; Which[e[j - 1] == 1, Break[], IntegerQ@ e[j], If[e[j] < #, e[j]++; c++] &@ Floor@ Log[Prime[j], Prime[j - 1]^e[j - 1]], True, Set[e[j], 1]], {j, 2, k}]; AppendTo[a, c + Boole[c == m - 2]], {k, 2, nn}]; MapAt[# - 1 &, a, 4]]

Formula

A347284(n) = Product_{k=1..n} A002110(a(k)).

A363098 Primitive terms of A363063.

Original entry on oeis.org

2, 12, 720, 864, 4320, 21600, 62208, 151200, 311040, 1555200, 7776000, 10886400, 54432000, 381024000, 4191264000, 160030080000, 251475840000, 1760330880000, 11522165760000, 19363639680000, 126743823360000, 251727315840000, 403275801600000, 829595934720000
Offset: 1

Views

Author

Pontus von Brömssen and Peter Munn, May 19 2023

Keywords

Comments

Numbers k > 1 in A363063 such that there are no i, j > 1 in A363063 with k = i*j.
Factorization into primitive terms of A363063 is not unique. The first counterexample is 1728 = 864 * 2 = 12^3.
For every odd prime p there are infinitely many terms whose greatest prime factor is p. Reading along the sequence, we see a term with a new greatest prime factor if and only if it is in A347284.

Examples

			4 is in A363063, but is not a term here, because 2 is in A363063 and 2 * 2 = 4.
720 is the first term of A363063 that is divisible by 5, from which we deduce 720 is not a product of nonunit terms of A363063. So 720 is a term here.
		

Crossrefs

A347288 Irregular triangle T(n,k) starting with 2^n followed by p_k^e_k = p_k^floor(log_p_k(p_(k-1)^e_(k-1))) such that e_k > 0.

Original entry on oeis.org

1, 2, 4, 3, 8, 3, 16, 9, 5, 32, 27, 25, 7, 64, 27, 25, 7, 128, 81, 25, 7, 256, 243, 125, 49, 11, 512, 243, 125, 49, 11, 1024, 729, 625, 343, 121, 13, 2048, 729, 625, 343, 121, 13, 4096, 2187, 625, 343, 121, 13, 8192, 6561, 3125, 2401, 1331, 169, 17
Offset: 0

Views

Author

Michael De Vlieger, Aug 28 2021

Keywords

Comments

T(0,1) = 1 by convention.
T(n,1) = 2^n. T(n,k) = p_k^e_k such that p_k^T(n,k) is the largest 1 < p_k^e_k < p_(k-1)^e_(k-1).

Examples

			Row 0 contains {1} by convention.
Row 1 contains {2} since no nonzero exponent e exists such that 3^e < 2^1.
Row 2 contains {4,3} since 3^1 < 2^2 yet 3^2 > 2^2. (We assume hereinafter that the powers listed are the largest possible smaller than the immediately previous term.)
Row 3 contains {8,3} since 2^3 > 3^1.
Row 4 contains {16,9,5} since 2^4 > 3^2 > 5^1, etc.
Triangle begins:
           2      3      5      7     11    13    17  ...
  --------------------------------------------------
  0:       1
  1:       2
  2:       4      3
  3:       8      3
  4:      16      9      5
  5:      32     27     25      7
  6:      64     27     25      7
  7:     128     81     25      7
  8:     256    243    125     49     11
  9:     512    243    125     49     11
  10:   1024    729    625    343    121    13
  11:   2048    729    625    343    121    13
  12:   4096   2187    625    343    121    13
  13:   8192   6561   3125   2401   1331   169   17
  14:  16384   6561   3125   2401   1331   169   17
  ...
		

Crossrefs

Programs

  • Mathematica
    {{1}}~Join~Array[Most@ NestWhile[Block[{p = Prime[#2]}, Append[#1, p^Floor@ Log[p, #1[[-1]]]]] & @@ {#, Length@ # + 1} &, {2^#}, #[[-1]] > 1 &] &, 13] (* Michael De Vlieger, Aug 28 2021 *)

Formula

T(n,1) = 2^n; T(n,k) = p_k^floor(log_p_k(p_(k-1)^T(n,k-1))).
A347385(n,k) = p_k^T(n,k).
A089576(n) = row lengths.
A347284(n) = product of row n.

A363250 Numbers in A363063 arranged in lexicographic order according to ordered prime signature (i.e., multiplicities of prime power factors p^k, written in order of p).

Original entry on oeis.org

1, 2, 4, 12, 8, 24, 16, 48, 144, 720, 32, 96, 288, 1440, 864, 4320, 21600, 151200, 64, 192, 576, 2880, 1728, 8640, 43200, 302400, 128, 384, 1152, 5760, 3456, 17280, 86400, 604800, 10368, 51840, 259200, 1814400, 256, 768, 2304, 11520, 6912, 34560, 172800, 1209600, 20736, 103680, 518400, 3628800, 62208
Offset: 0

Views

Author

Michael De Vlieger, May 23 2023

Keywords

Comments

The sequence is also readable as an irregular triangle by rows in which row n lists the terms divisible by 2^k but not by 2^(k+1).
Numbers m in A363063 are products of prime powers p(j)^S(j), j = 1..N, where p(j) is the j-th prime, such that p(j+1)^S(j+1) < p(j)^S(j). As consequence of definition of A363063, S(j) > S(j+1), hence multiplicities S(j) are distinct. Consequently, A363063 is a subset of A025487; m is a product of primorials. A025487 in turn is a subset of A055932.
These qualities enable us to write an algorithm that increments S(j) or drops the last term in S until we can increment S(j) to attain a solution. This algorithm generates terms in lexicographic order as described in the Name. The same qualities enable expression of m = Product p(j)^S(j) instead as Sum 2^(S(j)-1), a strictly increasing sequence.

Examples

			Table of n, a(n), and multiplicities S(j) written such that Product p(j)^S(j) = a(n). a(n) = A000079(i) is shown in the penultimate column, while a(n) = A347284(k) appears in the last column.
   n      a(n) multiplicities  i    k
  -----------------------------------
   0:       1                  0    0
   1:       2           1      1    1
   2:       4         2        2
   3:      12         2 1           2
   4:       8       3          3
   5:      24       3   1           3
   6:      16     4            4
   7:      48     4     1
   8:     144     4   2
   9:     720     4   2 1           4
  10:      32   5              5
  11:      96   5       1
  12:     288   5     2
  13:    1440   5     2 1
  14:     864   5   3
  15:    4320   5   3   1
  16:   21600   5   3 2
  17:  151200   5   3 2 1           5
  ...
Sequence read as an irregular triangle T(n, k):
  n\k   1    2    3     4     5     6      7       8
  ---------------------------------------------------
  0:    1
  1:    2
  2:    4   12
  3:    8   24
  4:   16   48  144   720
  5:   32   96  288  1440   864  4320  21600  151200
  6:   64  192  576  2880  1728  8640  43200  302400
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 12;
     f[x_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, x];
     {1}~Join~Reap[Do[s = {i}; Sow[2^i]; Set[k, 1];
         Do[
          If[Prime[k]^s[[-1]] > Prime[k + 1],
           AppendTo[s, 1]; k++; Sow[f[s]],
           If[Length[s] == 1, Break[],
            If[Prime[k - 1]^(s[[-2]]) > Prime[k]^(s[[-1]] + 1),
             s[[-1]]++; Sow[f[s]],
             While[And[k > 1,
               Prime[k - 1]^(s[[-2]]) < Prime[k]^(s[[-1]] + 1)], k--;
              s = s[[1 ;; k]]]; If[k == 1, Break[], s[[-1]]++; Sow[f[s]] ]
              ] ] ], {j, Infinity}], {i, nn}]][[-1, -1]]
  • Python
    from sympy import nextprime,oo
    from itertools import islice
    primes = [2] # global list of first primes
    def f(pi, ppmax):
        # Generate numbers with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime.
        if len(primes) <= pi: primes.append(nextprime(primes[-1]))
        p0 = primes[pi]
        if ppmax < p0:
            yield 1
            return
        pp = 1
        while pp <= ppmax:
            for x in f(pi+1, pp):
                yield pp*x
            pp *= p0
    def A363250_list(nterms):
        return list(islice(f(0,oo),nterms)) # Pontus von Brömssen, May 25 2023

Formula

Seen as an irregular triangle, the first term in row i is 2^i, and the last term in row i is A347284(i).

Extensions

Edited by Michael De Vlieger/_Peter Munn_, May 27 2025

A363234 Least number divisible by the first n primes whose factorization into maximal prime powers, if ordered by increasing prime divisor, then has these prime power factors in decreasing order.

Original entry on oeis.org

1, 2, 12, 720, 151200, 4191264000, 251727315840000, 1542111744113740800000, 10769764221549079560253440000000, 12109394351419848024974600399142912000000000, 78344066654781231654807043124290195568885760000000000, 188552692884723759943358058475004257579791386442930585600000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the least number in A347284 divisible by prime(n).
Also a(n) is the smallest positive integer divisible by prime(n) and prime(i)^e(i) > prime(i + 1)^e(i + 1) where e(k) is the valuation of prime(k) in a(n) and 1 <= i < n. - David A. Corneth, May 24 2023
Equivalently, we can say a(n) is the least number divisible by prime(n) in A363063. This is true also of A363098, the primitive terms of A363063. {a(n)} is the intersection of A347284 and A363098. - Peter Munn, May 29 2023
If we change the end of the sequence name from "decreasing order" to "increasing order", we get the primorial numbers (A002110). - Peter Munn, Jun 04 2023

Examples

			Table shows a(n) = A347284(j) = Product p(i)^m(i), m(i) is the i-th term read from left to right, delimited by ".", in row a(n) of A067255. Example: "4.2.1" signifies 2^4 * 3^2 * 5^1 = 720.
n    j   A067255(a(n))                                   a(n)
-------------------------------------------------------------
0    0                                                      1
1    1   1                                                  2
2    2   2.1                                               12
3    4   4.2.1                                            720
4    5   5.3.2.1                                       151200
5    8   8.5.3.2.1                                 4191264000
6   10   10.6.4.3.2.1                         251727315840000
7   13   13.8.5.4.3.2.1                1542111744113740800000
8   18   18.11.7.5.4.3.2.1   10769764221549079560253440000000
...
		

Crossrefs

Subsequence of A347284, A363063, A363098.

Programs

  • Mathematica
    nn = 120; a[0] = {0}; Do[b = {2^k}; Do[If[Last[b] == 1, Break[], i = 1; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]], {j, 2, k}]; Set[a[k], b], {k, nn}]; s = DeleteCases[Array[a, nn], 1, {2}]; {1}~Join~Table[Times @@ s[[FirstPosition[s, _?(Length[#] == k &)][[1]]]], {k, Max[Length /@ s]}]
    (* Generate terms from the linked image. Caution, terms become very large. *)
    img = Import["https://oeis.org/A363234/a363234.png", "Image"]; Map[Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ #] &, SplitBy[Position[ImageData[img][[1 ;; 12]], 0.], First][[All, All, -1]] ]
  • PARI
    a(n) = {resf = matrix(n, 2); resf[,1] = primes(n)~; resf[n, 2] = 1; forstep(j = n-1, 1, -1, resf[j, 2] = logint(resf[j+1, 1]^resf[j+1, 2], resf[j, 1]) + 1); factorback(resf)} \\ David A. Corneth, May 24 2023

Formula

a(n) = A347284(A347355(n)).

A363235 a(0) = 1; let e be the largest multiplicity such that p^e | a(n); for n>0, a(n) = Sum_{j=1..k} 2^(e(j)-1) where k is the index of the greatest power factor p(k)^e(k) such that p(k-1)^e(k-1) > p(k)^(e(k)+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 144, 145, 146, 147, 148, 149, 150, 151, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267
Offset: 0

Views

Author

Michael De Vlieger, Jun 09 2023

Keywords

Comments

A binary compactification of A363250, this sequence rewrites A363250(n) = Product_{i=1..omega(a(n))} p(i)^e(i) instead as Sum_{i=1..omega(a(n))} e(i)-1.
Not a permutation of nonnegative integers.

Examples

			a(1) = 1 since 2^1 is a product of the smallest primes p(i) whose prime power factors decrease as i increases; Hence a(1) = 2^(e(i)-1) = 1.
a(2) = 2 since we can find no power 3^e with e>=1 that is smaller than 2^1, we increment the exponent of 2 and have 2^2, hence a(2) = 2^(e(i)-1) = 2.
a(3) = 3 since indeed we may multiply 2^2 by 3^1; 2^2 > 3^1, hence Sum_{i=1..2} 2^(e(i)-1) = 2^1 + 2^0 = 2+1 = 3.
Table relating this sequence to A363250.
b(n) = A363250(n), f(n) = A067255(n), g(n) = A272011(n), with the latter two
   n      b(n)  f(b(n))  a(n)  g(a(n))
  ------------------------------------
   1        1   0          0   -
   2        2   1          1   0
   3        4   2          2   1
   4       12   2,1        3   1,0
   5        8   3          4   2
   6       24   3,1        5   2,0
   7       16   4          8   3
   8       48   4,1        9   3,0
   9      144   4,2       10   3,1
  10      720   4,2,1     11   3,1,0
  11       32   5         16   4
  12       96   5,1       17   4,0
  13      288   5,2       18   4,1
  14     1440   5,2,1     19   4,1,0
  15      864   5,3       20   4,2
  16     4320   5,3,1     21   4,2,0
  17    21600   5,3,2     22   4,2,1
  18   151200   5,3,2,1   23   4,2,1,0
  19       64   6         32   5
  ...
Therefore, a(18) = 23 = 2^4 + 2^2 + 2^1 + 2^0 since b(18) = 151200 = 2^5 * 3^3 * 5^2 * 7^1.
The sequence is a series of intervals, organized so as to begin with 2^k, that begin as follows:
     0
     1
     2..3
     4..5
     8..11
    16..23
    32..39
    64..75
   128..139     144..151
   256..267     272..279
   512..523     528..535     544..559
  1024..1035   1040..1047   1056..1071
  2048..2059   2064..2071   2080..2095   2112..2127
  ...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 300], AllTrue[Differences@ MapIndexed[Prime[First[#2]]^#1 &, Length[#] - Position[#, 1][[All, 1]] &@ IntegerDigits[#, 2] + 1], # < 0 &] &]
Showing 1-8 of 8 results.