A363132 Number of integer partitions of 2n such that 2*(minimum) = (mean).
0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0
Keywords
Examples
The a(2) = 1 through a(7) = 14 partitions: (31) (321) (62) (32221) (93) (3222221) (411) (3221) (33211) (552) (3322211) (3311) (42211) (642) (3332111) (4211) (43111) (732) (4222211) (5111) (52111) (822) (4322111) (61111) (322221) (4331111) (332211) (4421111) (333111) (5222111) (422211) (5321111) (432111) (5411111) (441111) (6221111) (522111) (6311111) (531111) (7211111) (621111) (8111111) (711111)
Crossrefs
Removing the factor 2 gives A099777.
Taking maximum instead of mean and including odd indices gives A118096.
For length instead of mean and including odd indices we have A237757.
For median instead of mean we have A361861.
These partitions have ranks A363133.
For maximum instead of minimum we have A363218.
For median instead of minimum we have A363224.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
-
Python
from sympy.utilities.iterables import partitions def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023
Extensions
a(31)-a(46) from Chai Wah Wu, Sep 21 2023
Comments