cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A359670 Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 21, 12, 1, 14, 62, 68, 20, 1, 24, 162, 284, 170, 30, 1, 40, 384, 998, 970, 360, 42, 1, 64, 855, 3092, 4410, 2720, 679, 56, 1, 100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1, 154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1, 232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

Related identity: 0 = Sum_{-oo..+oo} (-1)^n * x^n * (y + x^n)^n, which holds formally for all y.
T(n,0) = A015128(n), the number of overpartitions of n, for n >= 0.
T(n+1,1) = A022571(n), the coefficient of x^n in Product_{m>=1} (1 + x^m)^6, for n >= 0.
A359711(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A359712(n) = Sum_{k=0..n} T(n,k)*2^k for n >= 0.
A359713(n) = Sum_{k=0..n} T(n,k)*3^k for n >= 0.
A363104(n) = Sum_{k=0..n} T(n,k)*4^k for n >= 0.
A363105(n) = Sum_{k=0..n} T(n,k)*5^k for n >= 0.
A359714(n) = T(2*n,n) for n >= 0 (central terms).
A359715(n) = T(n+2,2) for n >= 0.
A359718(n) = T(n+3,3) for n >= 0.
A363142(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0. - Paul D. Hanna, May 18 2023
From Paul D. Hanna, May 20 2023: (Start)
A363182(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 2^(n-2*k) for n >= 0.
A363183(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 3^(n-2*k) for n >= 0.
A363184(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 4^(n-2*k) for n >= 0.
A363185(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 5^(n-2*k) for n >= 0. (End)

Examples

			G.f.: A(x,y) = 1 + x*(2 + y) + x^2*(4 + 6*y + y^2) + x^3*(8 + 21*y + 12*y^2 + y^3) + x^4*(14 + 62*y + 68*y^2 + 20*y^3 + y^4) + x^5*(24 + 162*y + 284*y^2 + 170*y^3 + 30*y^4 + y^5) + x^6*(40 + 384*y + 998*y^2 + 970*y^3 + 360*y^4 + 42*y^5 + y^6) + x^7*(64 + 855*y + 3092*y^2 + 4410*y^3 + 2720*y^4 + 679*y^5 + 56*y^6 + y^7) + x^8*(100 + 1806*y + 8724*y^2 + 17172*y^3 + 15627*y^4 + 6608*y^5 + 1176*y^6 + 72*y^7 + y^8) + x^9*(154 + 3648*y + 22904*y^2 + 59545*y^3 + 74682*y^4 + 47089*y^5 + 14392*y^6 + 1908*y^7 + 90*y^8 + y^9) + x^10*(232 + 7110*y + 56679*y^2 + 188700*y^3 + 311530*y^4 + 271698*y^5 + 125160*y^6 + 28764*y^7 + 2940*y^8 + 110*y^9 + y^10) + ...
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 0, k = 0..n, begins
[1];
[2, 1];
[4, 6, 1];
[8, 21, 12, 1];
[14, 62, 68, 20, 1];
[24, 162, 284, 170, 30, 1];
[40, 384, 998, 970, 360, 42, 1];
[64, 855, 3092, 4410, 2720, 679, 56, 1];
[100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1];
[154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1];
[232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1];
[344, 13434, 133516, 556085, 1169100, 1342684, 860664, 300888, 53640, 4345, 132, 1];
[504, 24702, 301664, 1542640, 4029237, 5884160, 4980320, 2438712, 666240, 94490, 6204, 156, 1];
[728, 44361, 657368, 4065868, 12940766, 23411339, 25215416, 16367874, 6302148, 1377464, 158708, 8606, 182, 1];
[1040, 78006, 1387854, 10253720, 39153924, 85994062, 114672768, 94919382, 48660900, 15071628, 2687454, 256022, 11648, 210, 1]; ...
RELATED SERIES.
Given g.f. F(x) of A361770, where
F(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 510*x^4 + 3498*x^5 + 25145*x^6 + 186972*x^7 + 1426159*x^8 + 11096944*x^9 + 87736474*x^10 + ... + A361770(n)*x^n + ...
then
(1) F(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * F(x)^k,
(2) F(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^2 + x^(n-1))^(n+1).
Given g.f. G(x) of A363135, where
G(x) = 1 + 3*x + 17*x^2 + 133*x^3 + 1201*x^4 + 11796*x^5 + 122192*x^6 + 1314266*x^7 + 14536760*x^8 + 164299909*x^9 + ... + A363135(n)*x^n + ...
then
(1) G(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * G(x)^(2*k),
(2) G(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^3 + x^(n-1))^(n+1).
		

Crossrefs

Cf. A359711 (row sums), A359712 (y=2), A359713 (y=3), A363104(y=4), A363105 (y=5).
Cf. A359714 (central terms), A359715 (column 2), A359718 (column 3).

Programs

  • PARI
    {T(n,k) = my(A=1); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( polcoeff( A,n,x),k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); polcoeff( A[n+1],k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k may be described as follows.
(1) y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).
(2) x*y = Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^(n+1).
(3) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n-1).
(4) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^n ].
(5) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^(n+1))^n ].
From Paul D. Hanna, May 18 2023: (Start)
(6) y = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (y*A(x,y) + x^n)^n.
(7) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (y*A(x,y) + x^n)^n ].
(8) x*y = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (y*A(x,y) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^n. (End)

A361770 Expansion of g.f. A(x) satisfying A(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^2 + x^(n-1))^(n+1).

Original entry on oeis.org

1, 3, 14, 80, 510, 3498, 25145, 186972, 1426159, 11096944, 87736474, 702837098, 5692337206, 46533458472, 383450469145, 3181746494524, 26562082580277, 222941953595054, 1880174585677589, 15924467403391355, 135396623401761765, 1155230973031795808, 9888061401816818319
Offset: 0

Views

Author

Paul D. Hanna, May 24 2023

Keywords

Comments

Given g.f. G(x,y) of triangle A359670, then A(x) = G(x,y=A(x)).

Examples

			G.f.: A(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 510*x^4 + 3498*x^5 + 25145*x^6 + 186972*x^7 + 1426159*x^8 + 11096944*x^9 + 87736474*x^10 + ...
where A = A(x) may be generated from triangle A359670 as follows:
A(x) = 1 + x*(2 + A) + x^2*(4 + 6*A + A^2) + x^3*(8 + 21*A + 12*A^2 + A^3) + x^4*(14 + 62*A + 68*A^2 + 20*A^3 + A^4) + x^5*(24 + 162*A + 284*A^2 + 170*A^3 + 30*A^4 + A^5) + x^6*(40 + 384*A + 998*A^2 + 970*A^3 + 360*A^4 + 42*A^5 + A^6) + x^7*(64 + 855*A + 3092*A^2 + 4410*A^3 + 2720*A^4 + 679*A^5 + 56*A^6 + A^7) + x^8*(100 + 1806*A + 8724*A^2 + 17172*A^3 + 15627*A^4 + 6608*A^5 + 1176*A^6 + 72*A^7 + A^8) + ... + x^n*(Sum_{k=0..n} A359670(n,k)*A(x)^k) + ...
Also, A(x) = G(x,y=1) where G(x,y) satisfies
y*G(x,y) = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*G(x,y)^2 + x^(n-1))^(n+1).
Explicitly,
G(x,y) = 1 + x*(2 + y) + x^2*(4 + 8*y + 2*y^2) + x^3*(8 + 37*y + 30*y^2 + 5*y^3) + x^4*(14 + 136*y + 234*y^2 + 112*y^3 + 14*y^4) + x^5*(24 + 432*y + 1320*y^2 + 1260*y^3 + 420*y^4 + 42*y^5) + x^6*(40 + 1232*y + 6093*y^2 + 9824*y^3 + 6240*y^4 + 1584*y^5 + 132*y^6) + x^7*(64 + 3245*y + 24402*y^2 + 60543*y^3 + 62880*y^4 + 29403*y^5 + 6006*y^6 + 429*y^7) + x^8*(100 + 8024*y + 87754*y^2 + 315616*y^3 + 490405*y^4 + 365816*y^5 + 134134*y^6 + 22880*y^7 + 1430*y^8) + x^9*(154 + 18832*y + 289812*y^2 + 1448744*y^3 + 3178302*y^4 + 3476418*y^5 + 1993992*y^6 + 598312*y^7 + 87516*y^8 + 4862*y^9) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(n=-#A, #A, (-1)^n * x^n * (Ser(A)^2 + x^(n-1))^(n+1) )/Ser(A), #A-1, x) ); A[n+1]}
    for(n=0, 25, print1( a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); for(i=1, n,
    A = 1/sum(m=-#A, #A, (-1)^m * (x*A^2 + x^m + x*O(x^n) )^m ) );
    polcoeff( A, n, x)}
    for(n=0, 25, print1( a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} A359670(n,k) * A(x)^k.
(2) A(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^2 + x^(n-1))^(n+1).
(3) A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (A(x)^2 + x^n)^n.
(4) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^2*x^(n+1))^(n-1).
(5) x*A(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + A(x)^2*x^(n+1))^(n+1).
(6) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^2 + x^(n-1))^n ].
(7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (A(x)^2 + x^n)^n ].
(8) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + A(x)^2*x^(n+1))^n ].
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x)^2 + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^2*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^2*x^(n+1))^n.
a(n) ~ c * d^n / n^(3/2), where d = 9.156930044633747979075094492861543774480990540... and c = 0.74413616954012053890115400925213042708811... - Vaclav Kotesovec, Jul 03 2025

A363136 Expansion of g.f. A(x) satisfying A(x)^3 = Sum_{n=-oo..+oo} (-x)^n * (A(x)^4 + x^(n-1))^(n+1).

Original entry on oeis.org

1, 3, 20, 201, 2364, 30356, 412223, 5821790, 84640367, 1258323895, 19041449659, 292322012264, 4541588520144, 71272574697572, 1128153098245655, 17990251268286993, 288748431461195204, 4660994483707782316, 75619617951059214712, 1232402387922242020729
Offset: 0

Views

Author

Paul D. Hanna, May 26 2023

Keywords

Comments

Given g.f. G(x,y) of triangle A359670, then A(x) = G(x,y=A(x)^3).

Examples

			G.f.: A(x) = 1 + 3*x + 20*x^2 + 201*x^3 + 2364*x^4 + 30356*x^5 + 412223*x^6 + 5821790*x^7 + 84640367*x^8 + 1258323895*x^9 + 19041449659*x^10 + ...
where A = A(x) may be generated from triangle A359670 as follows:
A(x) = 1 + x*(2 + A^3) + x^2*(4 + 6*A^3 + A^6) + x^3*(8 + 21*A^3 + 12*A^6 + A^9) + x^4*(14 + 62*A^3 + 68*A^6 + 20*A^9 + A^12) + x^5*(24 + 162*A^3 + 284*A^6 + 170*A^9 + 30*A^12 + A^15) + x^6*(40 + 384*A^3 + 998*A^6 + 970*A^9 + 360*A^12 + 42*A^15 + A^18) + x^7*(64 + 855*A^3 + 3092*A^6 + 4410*A^9 + 2720*A^12 + 679*A^15 + 56*A^18 + A^21) + x^8*(100 + 1806*A^3 + 8724*A^6 + 17172*A^9 + 15627*A^12 + 6608*A^15 + 1176*A^18 + 72*A^21 + A^24) + ... + x^n*(Sum_{k=0..n} A359670(n,k) * A(x)^(3*k)) + ...
RELATED SERIES.
A(x)^2 = 1 + 6*x + 49*x^2 + 522*x^3 + 6334*x^4 + 82936*x^5 + 1141543*x^6 + 16281486*x^7 + 238492002*x^8 + 3566598406*x^9 + ...
A(x)^3 = 1 + 9*x + 87*x^2 + 990*x^3 + 12450*x^4 + 166767*x^5 + 2332148*x^6 + 33654549*x^7 + 497426898*x^8 + 7492104096*x^9 + ...
A(x)^4 = 1 + 12*x + 134*x^2 + 1632*x^3 + 21333*x^4 + 293036*x^5 + 4171534*x^6 + 61001912*x^7 + 910937790*x^8 + 13833090604*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(n=-#A, #A, (-1)^n * x^n * (Ser(A)^4 + x^(n-1))^(n+1) )/Ser(A)^3, #A-1, x) ); A[n+1]}
    for(n=0, 25, print1( a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); for(i=1, n,
    A = 1/sum(m=-#A, #A, (-1)^m * (x*A^4 + x^m + x*O(x^n) )^m ) );
    polcoeff( A, n, x)}
    for(n=0, 25, print1( a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} A359670(n,k) * A(x)^(3*k).
(2) A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^4 + x^(n-1))^(n+1).
(3) A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (A(x)^4 + x^n)^n.
(4) x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^4*x^(n+1))^(n-1).
(5) x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + A(x)^4*x^(n+1))^(n+1).
(6) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^4 + x^(n-1))^n ].
(7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (A(x)^4 + x^n)^n ].
(8) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + A(x)^4*x^(n+1))^n ].
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x)^4 + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^4*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^4*x^(n+1))^n.

A363137 Expansion of g.f. A(x) satisfying A(x)^4 = Sum_{n=-oo..+oo} (-x)^n * (A(x)^5 + x^(n-1))^(n+1).

Original entry on oeis.org

1, 3, 23, 284, 4125, 65526, 1102403, 19305377, 348217156, 6425056149, 120700893495, 2300815588583, 44391646154596, 865243089927133, 17011581975085968, 336981451741477122, 6719019528496352690, 134742110298875293027, 2715909284023948643846, 54992586234084937679092
Offset: 0

Views

Author

Paul D. Hanna, May 26 2023

Keywords

Comments

Given g.f. G(x,y) of triangle A359670, then A(x) = G(x,y=A(x)^4).

Examples

			G.f.: A(x) = 1 + 3*x + 23*x^2 + 284*x^3 + 4125*x^4 + 65526*x^5 + 1102403*x^6 + 19305377*x^7 + 348217156*x^8 + 6425056149*x^9 + ...
where A = A(x) may be generated from triangle A359670 as follows:
A(x) = 1 + x*(2 + A^4) + x^2*(4 + 6*A^4 + A^8) + x^3*(8 + 21*A^4 + 12*A^8 + A^12) + x^4*(14 + 62*A^4 + 68*A^8 + 20*A^12 + A^16) + x^5*(24 + 162*A^4 + 284*A^8 + 170*A^12 + 30*A^16 + A^20) + x^6*(40 + 384*A^4 + 998*A^8 + 970*A^12 + 360*A^16 + 42*A^20 + A^24) + x^7*(64 + 855*A^4 + 3092*A^8 + 4410*A^12 + 2720*A^16 + 679*A^20 + 56*A^24 + A^28) + x^8*(100 + 1806*A^4 + 8724*A^8 + 17172*A^12 + 15627*A^16 + 6608*A^20 + 1176*A^24 + 72*A^28 + A^32) + ... + x^n*(Sum_{k=0..n} A359670(n,k) * A(x)^(4*k)) + ...
RELATED SERIES.
A(x)^2 = 1 + 6*x + 55*x^2 + 706*x^3 + 10483*x^4 + 168866*x^5 + 2868368*x^6 + 50582368*x^7 + 917211505*x^8 + 16994216980*x^9 + ...
A(x)^3 = 1 + 9*x + 96*x^2 + 1293*x^3 + 19695*x^4 + 322449*x^5 + 5539013*x^6 + 98484537*x^7 + 1797074331*x^8 + 33461795117*x^9 + ...
A(x)^4 = 1 + 12*x + 146*x^2 + 2072*x^3 + 32463*x^4 + 541188*x^5 + 9414694*x^6 + 168962408*x^7 + 3105263987*x^8 + 58149612672*x^9 + ...
A(x)^5 = 1 + 15*x + 205*x^2 + 3070*x^3 + 49570*x^4 + 842723*x^5 + 14864320*x^6 + 269521315*x^7 + 4992898830*x^8 + 94091310230*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(n=-#A, #A, (-1)^n * x^n * (Ser(A)^5 + x^(n-1))^(n+1) )/Ser(A)^4, #A-1, x) ); A[n+1]}
    for(n=0, 25, print1( a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); for(i=1, n,
    A = 1/sum(m=-#A, #A, (-1)^m * (x*A^5 + x^m + x*O(x^n) )^m ) );
    polcoeff( A, n, x)}
    for(n=0, 25, print1( a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} A359670(n,k) * A(x)^(4*k).
(2) A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^5 + x^(n-1))^(n+1).
(3) A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (A(x)^5 + x^n)^n.
(4) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^5*x^(n+1))^(n-1).
(5) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + A(x)^5*x^(n+1))^(n+1).
(6) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x)^5 + x^(n-1))^n ].
(7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (A(x)^5 + x^n)^n ].
(8) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + A(x)^5*x^(n+1))^n ].
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x)^5 + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^5*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)^5*x^(n+1))^n.
Showing 1-4 of 4 results.