cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363139 Expansion of A(x) satisfying -x = Sum_{n=-oo..+oo} (-x)^n * (1 - (-x)^n)^n / A(x)^n.

Original entry on oeis.org

1, 1, 2, 3, 10, 29, 72, 190, 520, 1413, 3888, 10839, 30421, 86218, 246499, 708931, 2050584, 5962100, 17407554, 51019081, 150052163, 442677295, 1309668356, 3884884796, 11551622175, 34425468793, 102807253860, 307617338332, 922112808168, 2768808168311, 8327028966970
Offset: 0

Views

Author

Paul D. Hanna, May 30 2023

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 10*x^4 + 29*x^5 + 72*x^6 + 190*x^7 + 520*x^8 + 1413*x^9 + 3888*x^10 + 10839*x^11 + 30421*x^12 + ...
SPECIFIC VALUES.
G.f. A(x) diverges at x = 1/3.
A(1/sqrt(10)) = 2.740968311596221258712215041101550216...
A(3/10) = 2.04409403049365965943794935957987166879615299154...
A(x) = 2 at x = 0.29764678443183662600376771573865711430158997980267844885...
A(1/4) = 1.54451964019778087973376938515481313055726531377...
		

Crossrefs

Cf. A357399.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(x + sum(n=-#A, #A, (-x)^n * (1 - (-x)^n +x*O(x^#A))^n / Ser(A)^n ), #A-1) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) -x = Sum_{n=-oo..+oo} (-x)^n * (1 - (-x)^n)^n / A(x)^n.
(2) -x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - (-x)^n)^n.