cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A359670 Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 21, 12, 1, 14, 62, 68, 20, 1, 24, 162, 284, 170, 30, 1, 40, 384, 998, 970, 360, 42, 1, 64, 855, 3092, 4410, 2720, 679, 56, 1, 100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1, 154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1, 232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

Related identity: 0 = Sum_{-oo..+oo} (-1)^n * x^n * (y + x^n)^n, which holds formally for all y.
T(n,0) = A015128(n), the number of overpartitions of n, for n >= 0.
T(n+1,1) = A022571(n), the coefficient of x^n in Product_{m>=1} (1 + x^m)^6, for n >= 0.
A359711(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A359712(n) = Sum_{k=0..n} T(n,k)*2^k for n >= 0.
A359713(n) = Sum_{k=0..n} T(n,k)*3^k for n >= 0.
A363104(n) = Sum_{k=0..n} T(n,k)*4^k for n >= 0.
A363105(n) = Sum_{k=0..n} T(n,k)*5^k for n >= 0.
A359714(n) = T(2*n,n) for n >= 0 (central terms).
A359715(n) = T(n+2,2) for n >= 0.
A359718(n) = T(n+3,3) for n >= 0.
A363142(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0. - Paul D. Hanna, May 18 2023
From Paul D. Hanna, May 20 2023: (Start)
A363182(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 2^(n-2*k) for n >= 0.
A363183(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 3^(n-2*k) for n >= 0.
A363184(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 4^(n-2*k) for n >= 0.
A363185(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 5^(n-2*k) for n >= 0. (End)

Examples

			G.f.: A(x,y) = 1 + x*(2 + y) + x^2*(4 + 6*y + y^2) + x^3*(8 + 21*y + 12*y^2 + y^3) + x^4*(14 + 62*y + 68*y^2 + 20*y^3 + y^4) + x^5*(24 + 162*y + 284*y^2 + 170*y^3 + 30*y^4 + y^5) + x^6*(40 + 384*y + 998*y^2 + 970*y^3 + 360*y^4 + 42*y^5 + y^6) + x^7*(64 + 855*y + 3092*y^2 + 4410*y^3 + 2720*y^4 + 679*y^5 + 56*y^6 + y^7) + x^8*(100 + 1806*y + 8724*y^2 + 17172*y^3 + 15627*y^4 + 6608*y^5 + 1176*y^6 + 72*y^7 + y^8) + x^9*(154 + 3648*y + 22904*y^2 + 59545*y^3 + 74682*y^4 + 47089*y^5 + 14392*y^6 + 1908*y^7 + 90*y^8 + y^9) + x^10*(232 + 7110*y + 56679*y^2 + 188700*y^3 + 311530*y^4 + 271698*y^5 + 125160*y^6 + 28764*y^7 + 2940*y^8 + 110*y^9 + y^10) + ...
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 0, k = 0..n, begins
[1];
[2, 1];
[4, 6, 1];
[8, 21, 12, 1];
[14, 62, 68, 20, 1];
[24, 162, 284, 170, 30, 1];
[40, 384, 998, 970, 360, 42, 1];
[64, 855, 3092, 4410, 2720, 679, 56, 1];
[100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1];
[154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1];
[232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1];
[344, 13434, 133516, 556085, 1169100, 1342684, 860664, 300888, 53640, 4345, 132, 1];
[504, 24702, 301664, 1542640, 4029237, 5884160, 4980320, 2438712, 666240, 94490, 6204, 156, 1];
[728, 44361, 657368, 4065868, 12940766, 23411339, 25215416, 16367874, 6302148, 1377464, 158708, 8606, 182, 1];
[1040, 78006, 1387854, 10253720, 39153924, 85994062, 114672768, 94919382, 48660900, 15071628, 2687454, 256022, 11648, 210, 1]; ...
RELATED SERIES.
Given g.f. F(x) of A361770, where
F(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 510*x^4 + 3498*x^5 + 25145*x^6 + 186972*x^7 + 1426159*x^8 + 11096944*x^9 + 87736474*x^10 + ... + A361770(n)*x^n + ...
then
(1) F(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * F(x)^k,
(2) F(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^2 + x^(n-1))^(n+1).
Given g.f. G(x) of A363135, where
G(x) = 1 + 3*x + 17*x^2 + 133*x^3 + 1201*x^4 + 11796*x^5 + 122192*x^6 + 1314266*x^7 + 14536760*x^8 + 164299909*x^9 + ... + A363135(n)*x^n + ...
then
(1) G(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * G(x)^(2*k),
(2) G(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^3 + x^(n-1))^(n+1).
		

Crossrefs

Cf. A359711 (row sums), A359712 (y=2), A359713 (y=3), A363104(y=4), A363105 (y=5).
Cf. A359714 (central terms), A359715 (column 2), A359718 (column 3).

Programs

  • PARI
    {T(n,k) = my(A=1); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( polcoeff( A,n,x),k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); polcoeff( A[n+1],k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k may be described as follows.
(1) y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).
(2) x*y = Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^(n+1).
(3) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n-1).
(4) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^n ].
(5) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^(n+1))^n ].
From Paul D. Hanna, May 18 2023: (Start)
(6) y = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (y*A(x,y) + x^n)^n.
(7) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (y*A(x,y) + x^n)^n ].
(8) x*y = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (y*A(x,y) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^n. (End)

A359711 a(n) = coefficient of x^n in A(x) such that 1 = Sum_{n=-oo..+oo} (-x)^n * (A(x) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 3, 11, 42, 165, 671, 2795, 11877, 51286, 224413, 992924, 4434833, 19969030, 90550829, 413148619, 1895338362, 8737219074, 40452543831, 188025758635, 877055405522, 4104269624748, 19262955163275, 90652992751518, 427681283728070, 2022341915324936, 9583224591208298
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

Row sums of triangle A359670.

Examples

			G.f.: A(x) = 1 + 3*x + 11*x^2 + 42*x^3 + 165*x^4 + 671*x^5 + 2795*x^6 + 11877*x^7 + 51286*x^8 + 224413*x^9 + 992924*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,y=1); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( A,n,x)}
    for(n=0,25, print1( a(n),", "))
    
  • PARI
    {a(n) = my(A=[1],y=1); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(n-1))^(n+1).
(2) x = Sum_{n=-oo..+oo} (-1)^n * (x*A(x) + x^n)^(n+1).
(3) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)*x^(n+1))^(n-1).
(4) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * (x*A(x) + x^n)^n ].
(5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + A(x)*x^(n+1))^n ].
From Paul D. Hanna, May 18 2023: (Start)
(6) 1 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (A(x) + x^n)^n.
(7) A(x) = -1 / [Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (A(x) + x^n)^n ].
(8) x = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + A*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (A(x) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + A(x)*x^n)^n. (End)
a(n) = Sum_{k=0..n} A359670(n,k) for n >= 0.
a(n) ~ c * d^n / n^(3/2), where d = 5.008723344615566939692217... and c = 4.45330627132612826203... - Vaclav Kotesovec, Mar 14 2023

A363182 Expansion of g.f. A(x) satisfying 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^(2*n-1))^(n+1).

Original entry on oeis.org

1, 2, 6, 20, 68, 234, 824, 2956, 10750, 39540, 146864, 550096, 2075432, 7880046, 30086704, 115445028, 444941028, 1721720032, 6686357238, 26051961396, 101810056296, 398962013908, 1567354966200, 6171824148252, 24355381522328, 96304034538898, 381506619687824
Offset: 0

Views

Author

Paul D. Hanna, May 20 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 68*x^4 + 234*x^5 + 824*x^6 + 2956*x^7 + 10750*x^8 + 39540*x^9 + 146864*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (2*Ser(A) + x^(2*m-1))^(m+1) ), #A-1)/2); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^(2*n-1))^(n+1).
(2) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 + 2*A(x)*x^(2*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^(2*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(3*n) * (2*A(x) + x^(2*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n^2) / (1 + 2*A(x)*x^(2*n+1))^n.
a(n) = Sum_{k=0..floor(n/2)} A359670(n-k,n-2*k) * 2^(n-2*k) for n >= 0.

A363184 Expansion of g.f. A(x) satisfying 4 = Sum_{n=-oo..+oo} (-1)^n * x^n * (4*A(x) + x^(2*n-1))^(n+1).

Original entry on oeis.org

1, 4, 18, 88, 452, 2388, 12872, 70520, 391630, 2199816, 12476024, 71341184, 410864744, 2381026908, 13874518912, 81244555896, 477825991140, 2821333839872, 16718050009866, 99385412418648, 592575029005992, 3542752436877800, 21233468105000280, 127555885796445432
Offset: 0

Views

Author

Paul D. Hanna, May 20 2023

Keywords

Comments

Conjecture: g.f. A(x) == theta_3(x^2) (mod 4); a(n) == 2 (mod 4) if n = 2*k^2 for integer k > 0, and a(n) == 0 (mod 4) if floor(n/2) is nonsquare.

Examples

			G.f.: A(x) = 1 + 4*x + 18*x^2 + 88*x^3 + 452*x^4 + 2388*x^5 + 12872*x^6 + 70520*x^7 + 391630*x^8 + 2199816*x^9 + 12476024*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (4*Ser(A) + x^(2*m-1))^(m+1) ), #A-1)/4); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 4 = Sum_{n=-oo..+oo} (-1)^n * x^n * (4*A(x) + x^(2*n-1))^(n+1).
(2) 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 + 4*A(x)*x^(2*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (4*A(x) + x^(2*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(3*n) * (4*A(x) + x^(2*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n^2) / (1 + 4*A(x)*x^(2*n+1))^n.
a(n) = Sum_{k=0..floor(n/2)} A359670(n-k,n-2*k) * 4^(n-2*k) for n >= 0.

A363183 Expansion of g.f. A(x) satisfying 3 = Sum_{n=-oo..+oo} (-1)^n * x^n * (3*A(x) + x^(2*n-1))^(n+1).

Original entry on oeis.org

1, 3, 11, 45, 193, 846, 3779, 17169, 79115, 368820, 1736169, 8241039, 39400672, 189567594, 917146729, 4459208292, 21776797603, 106771412718, 525382657858, 2593665077634, 12842387591191, 63762186132387, 317373771999035, 1583380006374078, 7916456438276103
Offset: 0

Views

Author

Paul D. Hanna, May 20 2023

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 11*x^2 + 45*x^3 + 193*x^4 + 846*x^5 + 3779*x^6 + 17169*x^7 + 79115*x^8 + 368820*x^9 + 1736169*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (3*Ser(A) + x^(2*m-1))^(m+1) ), #A-1)/3); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 3 = Sum_{n=-oo..+oo} (-1)^n * x^n * (3*A(x) + x^(2*n-1))^(n+1).
(2) 3*x = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 + 3*A(x)*x^(2*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (3*A(x) + x^(2*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(3*n) * (3*A(x) + x^(2*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n^2) / (1 + 3*A(x)*x^(2*n+1))^n.
a(n) = Sum_{k=0..floor(n/2)} A359670(n-k,n-2*k) * 3^(n-2*k) for n >= 0.

A363185 Expansion of g.f. A(x) satisfying 5 = Sum_{n=-oo..+oo} (-1)^n * x^n * (5*A(x) + x^(2*n-1))^(n+1).

Original entry on oeis.org

1, 5, 27, 155, 929, 5730, 36083, 230935, 1497739, 9822060, 65021849, 433937545, 2916359840, 19720710150, 134078691289, 915994242780, 6284957607075, 43291450899490, 299248617182754, 2075172105905550, 14432704539830007, 100648564848019045, 703624464015723819
Offset: 0

Views

Author

Paul D. Hanna, May 20 2023

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 27*x^2 + 155*x^3 + 929*x^4 + 5730*x^5 + 36083*x^6 + 230935*x^7 + 1497739*x^8 + 9822060*x^9 + 65021849*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (5*Ser(A) + x^(2*m-1))^(m+1) ), #A-1)/5); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 5 = Sum_{n=-oo..+oo} (-1)^n * x^n * (5*A(x) + x^(2*n-1))^(n+1).
(2) 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 + 5*A(x)*x^(2*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (5*A(x) + x^(2*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(3*n) * (5*A(x) + x^(2*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n^2) / (1 + 5*A(x)*x^(2*n+1))^n.
a(n) = Sum_{k=0..floor(n/2)} A359670(n-k,n-2*k) * 5^(n-2*k) for n >= 0.

A363143 Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(3*n-1))^(n+1).

Original entry on oeis.org

1, 1, 1, 3, 7, 13, 25, 52, 111, 235, 495, 1054, 2271, 4923, 10703, 23354, 51190, 112668, 248783, 550875, 1223107, 2722766, 6075619, 13586390, 30442616, 68339788, 153683822, 346173172, 780948750, 1764312745, 3991321375, 9040912764, 20503640896, 46552634034
Offset: 0

Views

Author

Paul D. Hanna, May 17 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 13*x^5 + 25*x^6 + 52*x^7 + 111*x^8 + 235*x^9 + 495*x^10 + 1054*x^11 + 2271*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (Ser(A) + x^(3*m-1))^(m+1) ),#A-1));A[n+1]}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(3*n-1))^(n+1).
(2) x = Sum_{n=-oo..+oo} (-1)^n * x^(3*n*(n-1)) / (1 + A(x)*x^(3*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(3*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(4*n) * (A(x) + x^(3*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(3*n^2) / (1 + A(x)*x^(3*n+1))^n.

A363144 Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(4*n-1))^(n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 13, 21, 35, 64, 125, 243, 459, 852, 1593, 3035, 5857, 11326, 21835, 42053, 81246, 157741, 307421, 600207, 1172805, 2294197, 4495735, 8827574, 17363422, 34198201, 67429181, 133097669, 263028031, 520406201, 1030749582, 2043553947, 4055171751
Offset: 0

Views

Author

Paul D. Hanna, May 17 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 3*x^4 + 7*x^5 + 13*x^6 + 21*x^7 + 35*x^8 + 64*x^9 + 125*x^10 + 243*x^11 + 459*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (Ser(A) + x^(4*m-1))^(m+1) ),#A-1));A[n+1]}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(4*n-1))^(n+1).
(2) x = Sum_{n=-oo..+oo} (-1)^n * x^(4*n*(n-1)) / (1 + A(x)*x^(4*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(4*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(5*n) * (A(x) + x^(4*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(4*n^2) / (1 + A(x)*x^(4*n+1))^n.
Showing 1-8 of 8 results.