A363145 Number of subsets S of {A007931(1), A007931(2), ..., A007931(n)} with the property that no element of S is a substring of any other.
1, 2, 4, 6, 8, 12, 21, 30, 38, 48, 63, 91, 145, 222, 390, 558, 712, 892, 1142, 1456, 1936, 2464, 3270, 4792, 7690, 11854, 18757, 28733, 47355, 73632, 130315, 186998, 239552, 300347, 388902, 492078, 643230, 816210, 1057438, 1354293, 1804608, 2338124, 3111812
Offset: 0
Examples
For n = 5 the a(5) = 12 independent sets of {A007931(1), A007931(2), ..., A007931(5)} = {1, 2, 11, 12, 21} are: 1) {}; 2) {1}; 3) {2}; 4) {2, 1}; 5) {11}; 6) {11, 2}; 7) {12}; 8) {12, 11}; 9) {21}; 10) {21, 11}; 11) {21, 12}; and 12) {21, 12, 11}. In each of these twelve sets, no string is a substring of any other. In particular, {12, 11, 2} is not an independent set because 2 is a substring of 12.
Links
- Wikipedia, Abstract simplicial complex
- Wikipedia, Independence system
Crossrefs
Cf. A007931.
Extensions
More terms from Pontus von Brömssen, Jul 15 2023
Comments