A363187 Prime numbers that are the average of three consecutive odd semiprimes.
31, 41, 59, 83, 107, 139, 163, 191, 197, 281, 311, 383, 397, 443, 521, 673, 677, 757, 821, 887, 997, 1061, 1109, 1151, 1171, 1229, 1237, 1373, 1423, 1453, 1619, 1823, 1889, 1931, 2053, 2141, 2203, 2221, 2309, 2339, 2437, 2473, 2477, 2749, 2801, 2837, 2953, 3019, 3119, 3163, 3209, 3257, 3347
Offset: 1
Keywords
Examples
31 is a term because (25 + 33 + 35)/3 = 31 is prime. 41 is a term because (35 + 39 + 49)/3 = 41 is prime.
Links
- Gabriel Whigham, Table of n, a(n) for n = 1..10000
Programs
-
Maple
OP:= select(isprime, [seq(i, i=3..10000, 2)]): OSP:= sort(select(`<=`, [seq(seq(OP[i]*OP[j], j=1..i), i=1..nops(OP))], 3*OP[-1])): SA:= [seq(add(OSP[i+j], j=0..2)/3, i=1..nops(OSP)-2)]: select(t -> t::integer and isprime(t), SA); # Robert Israel, May 22 2023
-
Mathematica
Select[Plus @@@ Partition[Select[Range[1, 3400, 2], PrimeOmega[#] == 2 &], 3, 1] / 3, PrimeQ] (* Amiram Eldar, May 21 2023 *)
-
Python
from itertools import count, islice from sympy import factorint, isprime def semiprime(n): return sum(e for e in factorint(n).values()) == 2 def nextoddsemiprime(n): return next(k for k in count(n+1+(n&1), 2) if semiprime(k)) def agen(): # generator of terms osp = [9, 15, 21] while True: q, r = divmod(sum(osp), len(osp)) if r == 0 and isprime(q): yield q osp = osp[1:] + [nextoddsemiprime(osp[-1])] print(list(islice(agen(), 53))) # Michael S. Branicky, May 21 2023