A363213 Number of partitions of n with rank 4 (the rank of a partition is the largest part minus the number of parts).
0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 12, 18, 20, 28, 33, 44, 51, 68, 80, 103, 122, 154, 182, 229, 270, 334, 396, 485, 572, 698, 822, 993, 1169, 1404, 1649, 1971, 2310, 2745, 3214, 3803, 4439, 5235, 6099, 7162, 8331, 9750, 11315, 13205, 15294, 17794, 20574, 23872
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
PARI
my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(4*k)*(x^(k*(3*k-1)/2)-x^(k*(3*k+1)/2)))))
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(4*k) * ( x^(k*(3*k-1)/2) - x^(k*(3*k+1)/2) ).