A363214 Number of partitions of n with rank 5 (the rank of a partition is the largest part minus the number of parts).
0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 13, 19, 21, 30, 35, 47, 55, 73, 85, 111, 131, 166, 197, 247, 291, 362, 428, 525, 620, 756, 890, 1078, 1268, 1523, 1791, 2140, 2507, 2983, 3490, 4131, 4824, 5688, 6626, 7785, 9052, 10595, 12298, 14351, 16618, 19339, 22355, 25938
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Count[IntegerPartitions[n],?(#[[1]]-Length[#]==5&)],{n,60}] (* _Harvey P. Dale, Feb 24 2024 *)
-
PARI
my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(5*k)*(x^(k*(3*k-1)/2)-x^(k*(3*k+1)/2)))))
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(5*k) * ( x^(k*(3*k-1)/2) - x^(k*(3*k+1)/2) ).