cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363217 Odd powerful numbers that are not powers of primes.

Original entry on oeis.org

225, 441, 675, 1089, 1125, 1225, 1323, 1521, 2025, 2601, 3025, 3087, 3249, 3267, 3375, 3969, 4225, 4563, 4761, 5625, 5929, 6075, 6125, 7225, 7569, 7803, 8281, 8575, 8649, 9025, 9261, 9747, 9801, 10125, 11025, 11907, 11979, 12321, 13225, 13689, 14161, 14283, 15125, 15129, 16641, 16875, 17689, 18225, 19773
Offset: 1

Views

Author

Michael De Vlieger, May 21 2023

Keywords

Comments

This sequence is { A286708 INTERSECT A005408 } = { A001694 INTERSECT A360769 }.
Subset of A001694, A062739, A126706, and A360769.

Examples

			a(1) = 225 = 3^2 * 5^2, the smallest odd number with multiple distinct prime factors, each of which have multiplicity exceeding 1.
a(2) = 441 = 3^2 * 7^2,
a(3) = 675 = 3^3 * 5^2, etc.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 20000}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], And[OddQ[#], ! PrimePowerQ[#]] &] ]
  • PARI
    isok(k) = (k>1) && (k%2) && ispowerful(k) && !isprimepower(k); \\ Michel Marcus, May 28 2023

Formula

This sequence is { k = a^2*b^3 : a >= 1, b >= 1, omega(k) > 1, k mod 2 = 1 }.
Sum_{n>=1} 1/a(n) = 2*zeta(2)*zeta(3)/(3*zeta(6)) - 1/2 - Sum_{p prime} 1/(p*(p-1)) = (2/3) * A082695 - 1/2 - A136141 = 0.0225742... . - Amiram Eldar, May 28 2023
Showing 1-1 of 1 results.