cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363132 Number of integer partitions of 2n such that 2*(minimum) = (mean).

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0

Views

Author

Gus Wiseman, May 23 2023

Keywords

Comments

Equivalently, n = (length)*(minimum).

Examples

			The a(2) = 1 through a(7) = 14 partitions:
  (31)  (321)  (62)    (32221)  (93)      (3222221)
        (411)  (3221)  (33211)  (552)     (3322211)
               (3311)  (42211)  (642)     (3332111)
               (4211)  (43111)  (732)     (4222211)
               (5111)  (52111)  (822)     (4322111)
                       (61111)  (322221)  (4331111)
                                (332211)  (4421111)
                                (333111)  (5222111)
                                (422211)  (5321111)
                                (432111)  (5411111)
                                (441111)  (6221111)
                                (522111)  (6311111)
                                (531111)  (7211111)
                                (621111)  (8111111)
                                (711111)
		

Crossrefs

Removing the factor 2 gives A099777.
Taking maximum instead of mean and including odd indices gives A118096.
For length instead of mean and including odd indices we have A237757.
For (maximum) = 2*(mean) see A361851, A361852, A361853, A361854, A361855.
For median instead of mean we have A361861.
These partitions have ranks A363133.
For maximum instead of minimum we have A363218.
For median instead of minimum we have A363224.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023

Extensions

a(31)-a(46) from Chai Wah Wu, Sep 21 2023

A363134 Positive integers whose multiset of prime indices satisfies: (length) = 2*(minimum).

Original entry on oeis.org

4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 81, 82, 86, 94, 106, 118, 122, 134, 135, 142, 146, 158, 166, 178, 189, 194, 202, 206, 214, 218, 225, 226, 254, 262, 274, 278, 297, 298, 302, 314, 315, 326, 334, 346, 351, 358, 362, 375, 382, 386, 394, 398, 422, 441
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     4: {1,1}         94: {1,15}       214: {1,28}
     6: {1,2}        106: {1,16}       218: {1,29}
    10: {1,3}        118: {1,17}       225: {2,2,3,3}
    14: {1,4}        122: {1,18}       226: {1,30}
    22: {1,5}        134: {1,19}       254: {1,31}
    26: {1,6}        135: {2,2,2,3}    262: {1,32}
    34: {1,7}        142: {1,20}       274: {1,33}
    38: {1,8}        146: {1,21}       278: {1,34}
    46: {1,9}        158: {1,22}       297: {2,2,2,5}
    58: {1,10}       166: {1,23}       298: {1,35}
    62: {1,11}       178: {1,24}       302: {1,36}
    74: {1,12}       189: {2,2,2,4}    314: {1,37}
    81: {2,2,2,2}    194: {1,25}       315: {2,2,3,4}
    82: {1,13}       202: {1,26}       326: {1,38}
    86: {1,14}       206: {1,27}       334: {1,39}
		

Crossrefs

Partitions of this type are counted by A237757.
Removing the factor 2 gives A324522.
For maximum instead of length we have A361908, counted by A118096.
For mean instead of length we have A363133, counted by A363132.
For maximum instead of minimum we have A363218, counted by A237753.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A360005 gives twice median of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[prix[#]]==2*Min[prix[#]]&]

Formula

A001222(a(n)) = 2*A055396(a(n)).

A363133 Numbers > 1 whose prime indices satisfy 2*(minimum) = (mean).

Original entry on oeis.org

10, 28, 30, 39, 84, 88, 90, 100, 115, 171, 208, 252, 255, 259, 264, 270, 273, 280, 300, 363, 517, 544, 624, 756, 783, 784, 792, 793, 810, 840, 880, 900, 925, 1000, 1035, 1085, 1197, 1216, 1241, 1425, 1495, 1521, 1595, 1615, 1632, 1683, 1691, 1785, 1872, 1911
Offset: 1

Views

Author

Gus Wiseman, May 29 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    10: {1,3}
    28: {1,1,4}
    30: {1,2,3}
    39: {2,6}
    84: {1,1,2,4}
    88: {1,1,1,5}
    90: {1,2,2,3}
   100: {1,1,3,3}
   115: {3,9}
   171: {2,2,8}
   208: {1,1,1,1,6}
   252: {1,1,2,2,4}
   255: {2,3,7}
   259: {4,12}
   264: {1,1,1,2,5}
		

Crossrefs

Removing the factor 2 gives A000961.
For maximum instead of mean we have A361908, counted by A118096.
Partitions of this type are counted by A363132.
For length instead of mean we have A363134, counted by A237757.
For 2*(maximum) = (length) we have A363218, counted by A237753.
A051293 counts subsets with integer mean.
A112798 lists prime indices, length A001222, sum A056239.
A360005 gives twice median of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==2*Min[prix[#]]&]
Showing 1-3 of 3 results.