A363226 Number of strict integer partitions of n containing some three possibly equal parts (a,b,c) such that a + b = c. A variation of sum-full strict partitions.
0, 0, 0, 1, 0, 0, 2, 1, 2, 3, 5, 4, 6, 7, 11, 11, 16, 18, 26, 29, 34, 42, 51, 62, 72, 84, 101, 119, 142, 166, 191, 226, 262, 300, 354, 405, 467, 540, 623, 705, 807, 927, 1060, 1206, 1369, 1551, 1760, 1998, 2248, 2556, 2861, 3236, 3628, 4100, 4587, 5152, 5756
Offset: 0
Keywords
Examples
The a(3) = 1 through a(15) = 11 partitions (A=10, B=11, C=12): 21 . . 42 421 431 63 532 542 84 643 653 A5 321 521 432 541 632 642 742 743 843 621 631 821 651 841 752 942 721 5321 921 A21 761 C21 4321 5421 5431 842 6432 6321 6421 B21 6531 7321 5432 7431 6431 7521 6521 8421 7421 9321 8321 54321
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,30}]
-
Python
from itertools import combinations_with_replacement from collections import Counter from sympy.utilities.iterables import partitions def A363226(n): return sum(1 for p in partitions(n) if max(p.values(),default=0)==1 and any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023
Extensions
a(31)-a(56) from Chai Wah Wu, Sep 20 2023
Comments