cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363230 Number of partitions of n with rank 3 or higher (the rank of a partition is the largest part minus the number of parts).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 70, 90, 120, 154, 201, 256, 330, 415, 529, 662, 833, 1035, 1293, 1595, 1976, 2425, 2982, 3640, 4449, 5401, 6565, 7935, 9592, 11543, 13891, 16645, 19943, 23808, 28408, 33792, 40172, 47619, 56413, 66661, 78708, 92724, 109149, 128213, 150486, 176293
Offset: 1

Views

Author

Seiichi Manyama, May 22 2023

Keywords

Examples

			a(6) = 2 counts these partitions: 6, 5+1.
		

Crossrefs

With rank r or higher: A064174 (r=0), A064173 (r=1), A123975 (r=2), this sequence (r=3), A363231 (r=4).

Programs

  • PARI
    a(n) = sum(k=1, sqrtint(n), (-1)^(k-1)*numbpart(n-k*(3*k+5)/2));

Formula

G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+5)/2).
a(n) = p(n-4) - p(n-11) + p(n-21) - ... + (-1)^(k-1) * p(n-k*(3*k+5)/2) + ..., where p() is A000041().
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)) * (1 - (1/(2*Pi) + 31*Pi/144) / sqrt(n/6)). - Vaclav Kotesovec, May 26 2023