cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363234 Least number divisible by the first n primes whose factorization into maximal prime powers, if ordered by increasing prime divisor, then has these prime power factors in decreasing order.

Original entry on oeis.org

1, 2, 12, 720, 151200, 4191264000, 251727315840000, 1542111744113740800000, 10769764221549079560253440000000, 12109394351419848024974600399142912000000000, 78344066654781231654807043124290195568885760000000000, 188552692884723759943358058475004257579791386442930585600000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the least number in A347284 divisible by prime(n).
Also a(n) is the smallest positive integer divisible by prime(n) and prime(i)^e(i) > prime(i + 1)^e(i + 1) where e(k) is the valuation of prime(k) in a(n) and 1 <= i < n. - David A. Corneth, May 24 2023
Equivalently, we can say a(n) is the least number divisible by prime(n) in A363063. This is true also of A363098, the primitive terms of A363063. {a(n)} is the intersection of A347284 and A363098. - Peter Munn, May 29 2023
If we change the end of the sequence name from "decreasing order" to "increasing order", we get the primorial numbers (A002110). - Peter Munn, Jun 04 2023

Examples

			Table shows a(n) = A347284(j) = Product p(i)^m(i), m(i) is the i-th term read from left to right, delimited by ".", in row a(n) of A067255. Example: "4.2.1" signifies 2^4 * 3^2 * 5^1 = 720.
n    j   A067255(a(n))                                   a(n)
-------------------------------------------------------------
0    0                                                      1
1    1   1                                                  2
2    2   2.1                                               12
3    4   4.2.1                                            720
4    5   5.3.2.1                                       151200
5    8   8.5.3.2.1                                 4191264000
6   10   10.6.4.3.2.1                         251727315840000
7   13   13.8.5.4.3.2.1                1542111744113740800000
8   18   18.11.7.5.4.3.2.1   10769764221549079560253440000000
...
		

Crossrefs

Subsequence of A347284, A363063, A363098.

Programs

  • Mathematica
    nn = 120; a[0] = {0}; Do[b = {2^k}; Do[If[Last[b] == 1, Break[], i = 1; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]], {j, 2, k}]; Set[a[k], b], {k, nn}]; s = DeleteCases[Array[a, nn], 1, {2}]; {1}~Join~Table[Times @@ s[[FirstPosition[s, _?(Length[#] == k &)][[1]]]], {k, Max[Length /@ s]}]
    (* Generate terms from the linked image. Caution, terms become very large. *)
    img = Import["https://oeis.org/A363234/a363234.png", "Image"]; Map[Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ #] &, SplitBy[Position[ImageData[img][[1 ;; 12]], 0.], First][[All, All, -1]] ]
  • PARI
    a(n) = {resf = matrix(n, 2); resf[,1] = primes(n)~; resf[n, 2] = 1; forstep(j = n-1, 1, -1, resf[j, 2] = logint(resf[j+1, 1]^resf[j+1, 2], resf[j, 1]) + 1); factorback(resf)} \\ David A. Corneth, May 24 2023

Formula

a(n) = A347284(A347355(n)).