A363234 Least number divisible by the first n primes whose factorization into maximal prime powers, if ordered by increasing prime divisor, then has these prime power factors in decreasing order.
1, 2, 12, 720, 151200, 4191264000, 251727315840000, 1542111744113740800000, 10769764221549079560253440000000, 12109394351419848024974600399142912000000000, 78344066654781231654807043124290195568885760000000000, 188552692884723759943358058475004257579791386442930585600000000000
Offset: 0
Examples
Table shows a(n) = A347284(j) = Product p(i)^m(i), m(i) is the i-th term read from left to right, delimited by ".", in row a(n) of A067255. Example: "4.2.1" signifies 2^4 * 3^2 * 5^1 = 720. n j A067255(a(n)) a(n) ------------------------------------------------------------- 0 0 1 1 1 1 2 2 2 2.1 12 3 4 4.2.1 720 4 5 5.3.2.1 151200 5 8 8.5.3.2.1 4191264000 6 10 10.6.4.3.2.1 251727315840000 7 13 13.8.5.4.3.2.1 1542111744113740800000 8 18 18.11.7.5.4.3.2.1 10769764221549079560253440000000 ...
Links
- Michael De Vlieger, Plot prime(i)^k | a(n) at (x,y) = (k,-n) for n = 1..503.
Programs
-
Mathematica
nn = 120; a[0] = {0}; Do[b = {2^k}; Do[If[Last[b] == 1, Break[], i = 1; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]], {j, 2, k}]; Set[a[k], b], {k, nn}]; s = DeleteCases[Array[a, nn], 1, {2}]; {1}~Join~Table[Times @@ s[[FirstPosition[s, _?(Length[#] == k &)][[1]]]], {k, Max[Length /@ s]}] (* Generate terms from the linked image. Caution, terms become very large. *) img = Import["https://oeis.org/A363234/a363234.png", "Image"]; Map[Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ #] &, SplitBy[Position[ImageData[img][[1 ;; 12]], 0.], First][[All, All, -1]] ]
-
PARI
a(n) = {resf = matrix(n, 2); resf[,1] = primes(n)~; resf[n, 2] = 1; forstep(j = n-1, 1, -1, resf[j, 2] = logint(resf[j+1, 1]^resf[j+1, 2], resf[j, 1]) + 1); factorback(resf)} \\ David A. Corneth, May 24 2023
Comments