cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363181 Number of permutations p of [n] such that for each i in [n] we have: (i>1) and |p(i)-p(i-1)| = 1 or (i

Original entry on oeis.org

1, 0, 2, 2, 8, 14, 54, 128, 498, 1426, 5736, 18814, 78886, 287296, 1258018, 4986402, 22789000, 96966318, 461790998, 2088374592, 10343408786, 49343711666, 253644381032, 1268995609502, 6756470362374, 35285321738624, 194220286045506, 1054759508543554
Offset: 0

Views

Author

Alois P. Heinz, May 19 2023

Keywords

Comments

Number of permutations p of [n] such that each element in p has at least one neighbor whose value is smaller or larger by one.
Number of permutations of [n] having n occurrences of the 1-box pattern.

Examples

			a(0) = 1: (), the empty permutation.
a(1) = 0.
a(2) = 2: 12, 21.
a(3) = 2: 123, 321.
a(4) = 8: 1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321.
a(5) = 14: 12345, 12354, 12543, 21345, 21543, 32145, 32154, 34512, 34521, 45123, 45321, 54123, 54312, 54321.
a(6) = 54: 123456, 123465, 123654, 124356, 124365, 125634, 125643, 126534, 126543, 213456, 213465, 214356, 214365, 215634, 215643, 216534, 216543, 321456, 321654, 341256, 341265, 342156, 342165, 345612, 345621, 346512, 346521, 431256, 431265, 432156, 432165, 435612, 435621, 436512, 436521, 456123, 456321, 561234, 561243, 562134, 562143, 563412, 563421, 564312, 564321, 651234, 651243, 652134, 652143, 653412, 653421, 654123, 654312, 654321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 2$2][n+1],
          3/2*a(n-1)+(n-3/2)*a(n-2)-(n-5/2)*a(n-3)+(n-4)*a(n-4))
        end:
    seq(a(n), n=0..30);

Formula

a(n) = A346462(n,n).
a(n)/2 mod 2 = A011655(n-1) for n>=1.
a(n) ~ sqrt(Pi) * n^((n+1)/2) / (2 * exp(n/2 - sqrt(n)/2 + 7/16)) * (1 - 119/(192*sqrt(n))). - Vaclav Kotesovec, May 26 2023

A363180 Number of permutations of [2n] with n parity changes.

Original entry on oeis.org

1, 2, 8, 288, 10368, 1036800, 103680000, 20321280000, 3982970880000, 1290482565120000, 418116351098880000, 202368313931857920000, 97946263943019233280000, 66211674425481001697280000, 44759091911625157147361280000, 40283182720462641432625152000000
Offset: 0

Views

Author

Alois P. Heinz, May 23 2023

Keywords

Examples

			a(0) = 1: (), the empty permutation.
a(1) = 2: 12, 21.
a(2) = 8: 1243, 1423, 2134, 2314, 3241, 3421, 4132, 4312.
a(3) = 288: 123546, 123564, 124356, 124536, 125346, ..., 652431, 653241, 653421, 654213, 654231.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 2^n,
          (16*(n-2)^2*(2*n-1)*(n-1)^2*a(n-2)+4*(2*n^2-4*n+1)*a(n-1))/(2*n-3))
        end:
    seq(a(n), n=0..18);

Formula

a(n) = A152874(2n,n).
From Vaclav Kotesovec, May 26 2023: (Start)
Recurrence: (2*n - 3)*a(n) = 4*(2*n^2 - 4*n + 1)*a(n-1) + 16*(n-2)^2*(n-1)^2*(2*n - 1)*a(n-2).
a(n) ~ 2^(2*n+1) * n^(2*n) / exp(2*n). (End)
Showing 1-2 of 2 results.