A363245 Lexicographically first sequence of positive integers such that all terms are pairwise coprime and no subset sum is a power of 2.
3, 7, 10, 11, 17, 31, 41, 71, 169, 199, 263, 337, 367, 1553, 2129, 2287, 2297, 4351, 10433, 16391, 16433, 34829, 65543, 69557, 165887, 262151, 358481, 817153, 952319, 1048583, 3704737, 3932167, 4518071, 12582919, 17305417, 17367019, 50069497, 50593799, 87228517
Offset: 1
Keywords
Links
- Jon E. Schoenfield, Magma program (computes first 36 terms).
Crossrefs
Cf. A353889.
Programs
-
Mathematica
a = {3}; k = 2; Monitor[Do[While[Or[! Apply[CoprimeQ, Join[a, {k}]], AnyTrue[Map[Log2 @* Total@ Append[#, k] &, Subsets[a]], IntegerQ]], k++]; AppendTo[a, k]; k++, {i, 16}], {i, k}]; a (* Michael De Vlieger, Jun 14 2023 *)
-
Python
from math import gcd from itertools import count, islice def agen(): # generator of terms a, ss, pows2, m = [], set(), {1, 2}, 2 for k in count(1): if k in pows2: continue elif k > m: m <<= 1; pows2.add(m) if any(p2-k in ss for p2 in pows2): continue if any(gcd(ai, k) != 1 for ai in a): continue a.append(k); yield k ss |= {k} | {k+si for si in ss if k+si not in ss} while m < max(ss): m <<= 1; pows2.add(m) print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 09 2023
Extensions
a(23)-a(33) from Michael S. Branicky, Jun 07 2023
a(34)-a(39) from Jon E. Schoenfield, Jun 09 2023