A363299 a(n) is the sum of the n-th powers of the terms of row 4 of Pascal's triangle.
5, 16, 70, 346, 1810, 9826, 54850, 312706, 1810690, 10601986, 62563330, 371185666, 2210336770, 13194911746, 78901035010, 472332468226, 2829699842050, 16961019183106, 101697395621890, 609909495824386, 3658357463318530, 21945746733400066, 131656888214355970, 789870960541958146
Offset: 0
Examples
a(2) = 1^2 + 4^2 + 6^2 + 4^2 + 1^2 = 1 + 16 + 36 + 16 + 1 = 70.
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-34,24).
Programs
-
Mathematica
Table[6^n + 2*(4^n + 1), {n, 0, 24}] (* Amiram Eldar, May 27 2023 *)
-
Python
def A363299(n): return 2+(((1<
Chai Wah Wu, Jun 27 2023
Formula
a(n) = 2 + 2*4^n + 6^n.
From Natalia L. Skirrow, Jun 25 2023: (Start)
G.f.: (5-39*x+64*x^2)/((1-x)*(1-4*x)*(1-6*x)).
E.g.f.: 2*e^x + 2*e^(4*x) + e^(6*x).
(End)